MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectcan Structured version   Visualization version   Unicode version

Theorem sectcan 16415
Description: If  G is a section of  F and  F is a section of  H, then  G  =  H. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectcan.b  |-  B  =  ( Base `  C
)
sectcan.s  |-  S  =  (Sect `  C )
sectcan.c  |-  ( ph  ->  C  e.  Cat )
sectcan.x  |-  ( ph  ->  X  e.  B )
sectcan.y  |-  ( ph  ->  Y  e.  B )
sectcan.1  |-  ( ph  ->  G ( X S Y ) F )
sectcan.2  |-  ( ph  ->  F ( Y S X ) H )
Assertion
Ref Expression
sectcan  |-  ( ph  ->  G  =  H )

Proof of Theorem sectcan
StepHypRef Expression
1 sectcan.b . . . 4  |-  B  =  ( Base `  C
)
2 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 eqid 2622 . . . 4  |-  (comp `  C )  =  (comp `  C )
4 sectcan.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 sectcan.x . . . 4  |-  ( ph  ->  X  e.  B )
6 sectcan.y . . . 4  |-  ( ph  ->  Y  e.  B )
7 sectcan.1 . . . . . 6  |-  ( ph  ->  G ( X S Y ) F )
8 eqid 2622 . . . . . . 7  |-  ( Id
`  C )  =  ( Id `  C
)
9 sectcan.s . . . . . . 7  |-  S  =  (Sect `  C )
101, 2, 3, 8, 9, 4, 5, 6issect 16413 . . . . . 6  |-  ( ph  ->  ( G ( X S Y ) F  <-> 
( G  e.  ( X ( Hom  `  C
) Y )  /\  F  e.  ( Y
( Hom  `  C ) X )  /\  ( F ( <. X ,  Y >. (comp `  C
) X ) G )  =  ( ( Id `  C ) `
 X ) ) ) )
117, 10mpbid 222 . . . . 5  |-  ( ph  ->  ( G  e.  ( X ( Hom  `  C
) Y )  /\  F  e.  ( Y
( Hom  `  C ) X )  /\  ( F ( <. X ,  Y >. (comp `  C
) X ) G )  =  ( ( Id `  C ) `
 X ) ) )
1211simp1d 1073 . . . 4  |-  ( ph  ->  G  e.  ( X ( Hom  `  C
) Y ) )
13 sectcan.2 . . . . . 6  |-  ( ph  ->  F ( Y S X ) H )
141, 2, 3, 8, 9, 4, 6, 5issect 16413 . . . . . 6  |-  ( ph  ->  ( F ( Y S X ) H  <-> 
( F  e.  ( Y ( Hom  `  C
) X )  /\  H  e.  ( X
( Hom  `  C ) Y )  /\  ( H ( <. Y ,  X >. (comp `  C
) Y ) F )  =  ( ( Id `  C ) `
 Y ) ) ) )
1513, 14mpbid 222 . . . . 5  |-  ( ph  ->  ( F  e.  ( Y ( Hom  `  C
) X )  /\  H  e.  ( X
( Hom  `  C ) Y )  /\  ( H ( <. Y ,  X >. (comp `  C
) Y ) F )  =  ( ( Id `  C ) `
 Y ) ) )
1615simp1d 1073 . . . 4  |-  ( ph  ->  F  e.  ( Y ( Hom  `  C
) X ) )
1715simp2d 1074 . . . 4  |-  ( ph  ->  H  e.  ( X ( Hom  `  C
) Y ) )
181, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17catass 16347 . . 3  |-  ( ph  ->  ( ( H (
<. Y ,  X >. (comp `  C ) Y ) F ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  ( H ( <. X ,  X >. (comp `  C
) Y ) ( F ( <. X ,  Y >. (comp `  C
) X ) G ) ) )
1915simp3d 1075 . . . 4  |-  ( ph  ->  ( H ( <. Y ,  X >. (comp `  C ) Y ) F )  =  ( ( Id `  C
) `  Y )
)
2019oveq1d 6665 . . 3  |-  ( ph  ->  ( ( H (
<. Y ,  X >. (comp `  C ) Y ) F ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  ( ( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) G ) )
2111simp3d 1075 . . . 4  |-  ( ph  ->  ( F ( <. X ,  Y >. (comp `  C ) X ) G )  =  ( ( Id `  C
) `  X )
)
2221oveq2d 6666 . . 3  |-  ( ph  ->  ( H ( <. X ,  X >. (comp `  C ) Y ) ( F ( <. X ,  Y >. (comp `  C ) X ) G ) )  =  ( H ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) ) )
2318, 20, 223eqtr3d 2664 . 2  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  ( H ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) )
241, 2, 8, 4, 5, 3, 6, 12catlid 16344 . 2  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  G )
251, 2, 8, 4, 5, 3, 6, 17catrid 16345 . 2  |-  ( ph  ->  ( H ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) )  =  H )
2623, 24, 253eqtr3d 2664 1  |-  ( ph  ->  G  =  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407
This theorem is referenced by:  invfun  16424  inveq  16434
  Copyright terms: Public domain W3C validator