MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectco Structured version   Visualization version   Unicode version

Theorem sectco 16416
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectco.b  |-  B  =  ( Base `  C
)
sectco.o  |-  .x.  =  (comp `  C )
sectco.s  |-  S  =  (Sect `  C )
sectco.c  |-  ( ph  ->  C  e.  Cat )
sectco.x  |-  ( ph  ->  X  e.  B )
sectco.y  |-  ( ph  ->  Y  e.  B )
sectco.z  |-  ( ph  ->  Z  e.  B )
sectco.1  |-  ( ph  ->  F ( X S Y ) G )
sectco.2  |-  ( ph  ->  H ( Y S Z ) K )
Assertion
Ref Expression
sectco  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K ) )

Proof of Theorem sectco
StepHypRef Expression
1 sectco.b . . . 4  |-  B  =  ( Base `  C
)
2 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 sectco.o . . . 4  |-  .x.  =  (comp `  C )
4 sectco.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 sectco.x . . . 4  |-  ( ph  ->  X  e.  B )
6 sectco.z . . . 4  |-  ( ph  ->  Z  e.  B )
7 sectco.y . . . 4  |-  ( ph  ->  Y  e.  B )
8 sectco.1 . . . . . . 7  |-  ( ph  ->  F ( X S Y ) G )
9 eqid 2622 . . . . . . . 8  |-  ( Id
`  C )  =  ( Id `  C
)
10 sectco.s . . . . . . . 8  |-  S  =  (Sect `  C )
111, 2, 3, 9, 10, 4, 5, 7issect 16413 . . . . . . 7  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  ( ( Id `  C
) `  X )
) ) )
128, 11mpbid 222 . . . . . 6  |-  ( ph  ->  ( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  ( ( Id `  C
) `  X )
) )
1312simp1d 1073 . . . . 5  |-  ( ph  ->  F  e.  ( X ( Hom  `  C
) Y ) )
14 sectco.2 . . . . . . 7  |-  ( ph  ->  H ( Y S Z ) K )
151, 2, 3, 9, 10, 4, 7, 6issect 16413 . . . . . . 7  |-  ( ph  ->  ( H ( Y S Z ) K  <-> 
( H  e.  ( Y ( Hom  `  C
) Z )  /\  K  e.  ( Z
( Hom  `  C ) Y )  /\  ( K ( <. Y ,  Z >.  .x.  Y ) H )  =  ( ( Id `  C
) `  Y )
) ) )
1614, 15mpbid 222 . . . . . 6  |-  ( ph  ->  ( H  e.  ( Y ( Hom  `  C
) Z )  /\  K  e.  ( Z
( Hom  `  C ) Y )  /\  ( K ( <. Y ,  Z >.  .x.  Y ) H )  =  ( ( Id `  C
) `  Y )
) )
1716simp1d 1073 . . . . 5  |-  ( ph  ->  H  e.  ( Y ( Hom  `  C
) Z ) )
181, 2, 3, 4, 5, 7, 6, 13, 17catcocl 16346 . . . 4  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X ( Hom  `  C ) Z ) )
1916simp2d 1074 . . . 4  |-  ( ph  ->  K  e.  ( Z ( Hom  `  C
) Y ) )
2012simp2d 1074 . . . 4  |-  ( ph  ->  G  e.  ( Y ( Hom  `  C
) X ) )
211, 2, 3, 4, 5, 6, 7, 18, 19, 5, 20catass 16347 . . 3  |-  ( ph  ->  ( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( G ( <. X ,  Y >.  .x. 
X ) ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
2216simp3d 1075 . . . . . 6  |-  ( ph  ->  ( K ( <. Y ,  Z >.  .x. 
Y ) H )  =  ( ( Id
`  C ) `  Y ) )
2322oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
Y ) H ) ( <. X ,  Y >.  .x.  Y ) F )  =  ( ( ( Id `  C
) `  Y )
( <. X ,  Y >.  .x.  Y ) F ) )
241, 2, 3, 4, 5, 7, 6, 13, 17, 7, 19catass 16347 . . . . 5  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
Y ) H ) ( <. X ,  Y >.  .x.  Y ) F )  =  ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) )
251, 2, 9, 4, 5, 3, 7, 13catlid 16344 . . . . 5  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )
2623, 24, 253eqtr3d 2664 . . . 4  |-  ( ph  ->  ( K ( <. X ,  Z >.  .x. 
Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  F )
2726oveq2d 6666 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
X ) ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
2812simp3d 1075 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
X ) F )  =  ( ( Id
`  C ) `  X ) )
2921, 27, 283eqtrd 2660 . 2  |-  ( ph  ->  ( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( ( Id `  C ) `  X
) )
301, 2, 3, 4, 6, 7, 5, 19, 20catcocl 16346 . . 3  |-  ( ph  ->  ( G ( <. Z ,  Y >.  .x. 
X ) K )  e.  ( Z ( Hom  `  C ) X ) )
311, 2, 3, 9, 10, 4, 5, 6, 18, 30issect2 16414 . 2  |-  ( ph  ->  ( ( H (
<. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K )  <-> 
( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( ( Id `  C ) `  X
) ) )
3229, 31mpbird 247 1  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407
This theorem is referenced by:  invco  16431
  Copyright terms: Public domain W3C validator