Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss2 Structured version   Visualization version   Unicode version

Theorem sigagenss2 30213
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
sigagenss2  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  (sigaGen `  A )  C_  (sigaGen `  B ) )

Proof of Theorem sigagenss2
StepHypRef Expression
1 sigagensiga 30204 . . . 4  |-  ( B  e.  V  ->  (sigaGen `  B )  e.  (sigAlgebra ` 
U. B ) )
213ad2ant3 1084 . . 3  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  (sigaGen `  B )  e.  (sigAlgebra ` 
U. B ) )
3 simp1 1061 . . . 4  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  U. A  =  U. B )
43fveq2d 6195 . . 3  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  (sigAlgebra ` 
U. A )  =  (sigAlgebra `  U. B ) )
52, 4eleqtrrd 2704 . 2  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  (sigaGen `  B )  e.  (sigAlgebra ` 
U. A ) )
6 simp2 1062 . 2  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  A  C_  (sigaGen `  B )
)
7 sigagenss 30212 . 2  |-  ( ( (sigaGen `  B )  e.  (sigAlgebra `  U. A )  /\  A  C_  (sigaGen `  B ) )  -> 
(sigaGen `  A )  C_  (sigaGen `  B ) )
85, 6, 7syl2anc 693 1  |-  ( ( U. A  =  U. B  /\  A  C_  (sigaGen `  B )  /\  B  e.  V )  ->  (sigaGen `  A )  C_  (sigaGen `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   U.cuni 4436   ` cfv 5888  sigAlgebracsiga 30170  sigaGencsigagen 30201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-siga 30171  df-sigagen 30202
This theorem is referenced by:  sxbrsigalem3  30334  sxbrsigalem1  30347  sxbrsigalem2  30348  sxbrsigalem4  30349  sxbrsigalem5  30350  sxbrsiga  30352
  Copyright terms: Public domain W3C validator