Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagensiga Structured version   Visualization version   Unicode version

Theorem sigagensiga 30204
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagensiga  |-  ( A  e.  V  ->  (sigaGen `  A )  e.  (sigAlgebra ` 
U. A ) )

Proof of Theorem sigagensiga
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 sigagenval 30203 . 2  |-  ( A  e.  V  ->  (sigaGen `  A )  =  |^| { s  e.  (sigAlgebra `  U. A )  |  A  C_  s } )
2 fvex 6201 . . . . 5  |-  (sigaGen `  A
)  e.  _V
31, 2syl6eqelr 2710 . . . 4  |-  ( A  e.  V  ->  |^| { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  _V )
4 intex 4820 . . . 4  |-  ( { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  =/=  (/)  <->  |^| { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  _V )
53, 4sylibr 224 . . 3  |-  ( A  e.  V  ->  { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  =/=  (/) )
6 ssrab2 3687 . . . . 5  |-  { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  C_  (sigAlgebra `  U. A )
76a1i 11 . . . 4  |-  ( A  e.  V  ->  { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  C_  (sigAlgebra `  U. A ) )
8 fvex 6201 . . . . 5  |-  (sigAlgebra `  U. A )  e.  _V
98elpw2 4828 . . . 4  |-  ( { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  ~P (sigAlgebra `
 U. A )  <->  { s  e.  (sigAlgebra ` 
U. A )  |  A  C_  s }  C_  (sigAlgebra `  U. A ) )
107, 9sylibr 224 . . 3  |-  ( A  e.  V  ->  { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  ~P (sigAlgebra ` 
U. A ) )
11 insiga 30200 . . 3  |-  ( ( { s  e.  (sigAlgebra ` 
U. A )  |  A  C_  s }  =/=  (/)  /\  { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  ~P (sigAlgebra ` 
U. A ) )  ->  |^| { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  (sigAlgebra `  U. A ) )
125, 10, 11syl2anc 693 . 2  |-  ( A  e.  V  ->  |^| { s  e.  (sigAlgebra `  U. A )  |  A  C_  s }  e.  (sigAlgebra `  U. A ) )
131, 12eqeltrd 2701 1  |-  ( A  e.  V  ->  (sigaGen `  A )  e.  (sigAlgebra ` 
U. A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   ` cfv 5888  sigAlgebracsiga 30170  sigaGencsigagen 30201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-siga 30171  df-sigagen 30202
This theorem is referenced by:  sgsiga  30205  unisg  30206  sigagenss2  30213  brsiga  30246  brsigarn  30247  cldssbrsiga  30250  sxsiga  30254  cnmbfm  30325  sxbrsiga  30352
  Copyright terms: Public domain W3C validator