Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem3 Structured version   Visualization version   Unicode version

Theorem sxbrsigalem3 30334
Description: The sigma-algebra generated by the closed half-spaces of  ( RR  X.  RR ) is a subset of the sigma-algebra generated by the closed sets of  ( RR  X.  RR ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
sxbrsigalem3  |-  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) 
C_  (sigaGen `  ( Clsd `  ( J  tX  J
) ) )
Distinct variable group:    e, f
Allowed substitution hints:    J( e, f)

Proof of Theorem sxbrsigalem3
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsigalem0 30333 . . 3  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  =  ( RR  X.  RR )
2 sxbrsiga.0 . . . . . 6  |-  J  =  ( topGen `  ran  (,) )
3 retop 22565 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  Top
42, 3eqeltri 2697 . . . . 5  |-  J  e. 
Top
54, 4txtopi 21393 . . . 4  |-  ( J 
tX  J )  e. 
Top
6 uniretop 22566 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
72unieqi 4445 . . . . . 6  |-  U. J  =  U. ( topGen `  ran  (,) )
86, 7eqtr4i 2647 . . . . 5  |-  RR  =  U. J
94, 4, 8, 8txunii 21396 . . . 4  |-  ( RR 
X.  RR )  = 
U. ( J  tX  J )
105, 9unicls 29949 . . 3  |-  U. ( Clsd `  ( J  tX  J ) )  =  ( RR  X.  RR )
111, 10eqtr4i 2647 . 2  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  = 
U. ( Clsd `  ( J  tX  J ) )
12 ovex 6678 . . . . . . 7  |-  ( e [,) +oo )  e. 
_V
13 reex 10027 . . . . . . 7  |-  RR  e.  _V
1412, 13xpex 6962 . . . . . 6  |-  ( ( e [,) +oo )  X.  RR )  e.  _V
15 eqid 2622 . . . . . 6  |-  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  =  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )
1614, 15fnmpti 6022 . . . . 5  |-  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  Fn  RR
17 oveq1 6657 . . . . . . . . 9  |-  ( e  =  u  ->  (
e [,) +oo )  =  ( u [,) +oo ) )
1817xpeq1d 5138 . . . . . . . 8  |-  ( e  =  u  ->  (
( e [,) +oo )  X.  RR )  =  ( ( u [,) +oo )  X.  RR ) )
19 ovex 6678 . . . . . . . . 9  |-  ( u [,) +oo )  e. 
_V
2019, 13xpex 6962 . . . . . . . 8  |-  ( ( u [,) +oo )  X.  RR )  e.  _V
2118, 15, 20fvmpt 6282 . . . . . . 7  |-  ( u  e.  RR  ->  (
( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `  u
)  =  ( ( u [,) +oo )  X.  RR ) )
22 icopnfcld 22571 . . . . . . . . 9  |-  ( u  e.  RR  ->  (
u [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
232fveq2i 6194 . . . . . . . . 9  |-  ( Clsd `  J )  =  (
Clsd `  ( topGen ` 
ran  (,) ) )
2422, 23syl6eleqr 2712 . . . . . . . 8  |-  ( u  e.  RR  ->  (
u [,) +oo )  e.  ( Clsd `  J
) )
25 dif0 3950 . . . . . . . . 9  |-  ( RR 
\  (/) )  =  RR
26 0opn 20709 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (/)  e.  J
)
274, 26ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  J
288opncld 20837 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  (/) 
e.  J )  -> 
( RR  \  (/) )  e.  ( Clsd `  J
) )
294, 27, 28mp2an 708 . . . . . . . . 9  |-  ( RR 
\  (/) )  e.  (
Clsd `  J )
3025, 29eqeltrri 2698 . . . . . . . 8  |-  RR  e.  ( Clsd `  J )
31 txcld 21406 . . . . . . . 8  |-  ( ( ( u [,) +oo )  e.  ( Clsd `  J )  /\  RR  e.  ( Clsd `  J
) )  ->  (
( u [,) +oo )  X.  RR )  e.  ( Clsd `  ( J  tX  J ) ) )
3224, 30, 31sylancl 694 . . . . . . 7  |-  ( u  e.  RR  ->  (
( u [,) +oo )  X.  RR )  e.  ( Clsd `  ( J  tX  J ) ) )
3321, 32eqeltrd 2701 . . . . . 6  |-  ( u  e.  RR  ->  (
( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `  u
)  e.  ( Clsd `  ( J  tX  J
) ) )
3433rgen 2922 . . . . 5  |-  A. u  e.  RR  ( ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `  u )  e.  (
Clsd `  ( J  tX  J ) )
35 fnfvrnss 6390 . . . . 5  |-  ( ( ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  Fn  RR  /\ 
A. u  e.  RR  ( ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `  u )  e.  (
Clsd `  ( J  tX  J ) ) )  ->  ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  C_  ( Clsd `  ( J  tX  J ) ) )
3616, 34, 35mp2an 708 . . . 4  |-  ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) 
C_  ( Clsd `  ( J  tX  J ) )
37 ovex 6678 . . . . . . 7  |-  ( f [,) +oo )  e. 
_V
3813, 37xpex 6962 . . . . . 6  |-  ( RR 
X.  ( f [,) +oo ) )  e.  _V
39 eqid 2622 . . . . . 6  |-  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  =  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) )
4038, 39fnmpti 6022 . . . . 5  |-  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  Fn  RR
41 oveq1 6657 . . . . . . . . 9  |-  ( f  =  v  ->  (
f [,) +oo )  =  ( v [,) +oo ) )
4241xpeq2d 5139 . . . . . . . 8  |-  ( f  =  v  ->  ( RR  X.  ( f [,) +oo ) )  =  ( RR  X.  ( v [,) +oo ) ) )
43 ovex 6678 . . . . . . . . 9  |-  ( v [,) +oo )  e. 
_V
4413, 43xpex 6962 . . . . . . . 8  |-  ( RR 
X.  ( v [,) +oo ) )  e.  _V
4542, 39, 44fvmpt 6282 . . . . . . 7  |-  ( v  e.  RR  ->  (
( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) `  v
)  =  ( RR 
X.  ( v [,) +oo ) ) )
46 icopnfcld 22571 . . . . . . . . 9  |-  ( v  e.  RR  ->  (
v [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
4746, 23syl6eleqr 2712 . . . . . . . 8  |-  ( v  e.  RR  ->  (
v [,) +oo )  e.  ( Clsd `  J
) )
48 txcld 21406 . . . . . . . 8  |-  ( ( RR  e.  ( Clsd `  J )  /\  (
v [,) +oo )  e.  ( Clsd `  J
) )  ->  ( RR  X.  ( v [,) +oo ) )  e.  (
Clsd `  ( J  tX  J ) ) )
4930, 47, 48sylancr 695 . . . . . . 7  |-  ( v  e.  RR  ->  ( RR  X.  ( v [,) +oo ) )  e.  (
Clsd `  ( J  tX  J ) ) )
5045, 49eqeltrd 2701 . . . . . 6  |-  ( v  e.  RR  ->  (
( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) `  v
)  e.  ( Clsd `  ( J  tX  J
) ) )
5150rgen 2922 . . . . 5  |-  A. v  e.  RR  ( ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) `  v )  e.  (
Clsd `  ( J  tX  J ) )
52 fnfvrnss 6390 . . . . 5  |-  ( ( ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) )  Fn  RR  /\ 
A. v  e.  RR  ( ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) `  v )  e.  (
Clsd `  ( J  tX  J ) ) )  ->  ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) )  C_  ( Clsd `  ( J  tX  J ) ) )
5340, 51, 52mp2an 708 . . . 4  |-  ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) )  C_  ( Clsd `  ( J  tX  J
) )
5436, 53unssi 3788 . . 3  |-  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  C_  ( Clsd `  ( J  tX  J ) )
55 fvex 6201 . . . 4  |-  ( Clsd `  ( J  tX  J
) )  e.  _V
56 sssigagen 30208 . . . 4  |-  ( (
Clsd `  ( J  tX  J ) )  e. 
_V  ->  ( Clsd `  ( J  tX  J ) ) 
C_  (sigaGen `  ( Clsd `  ( J  tX  J
) ) ) )
5755, 56ax-mp 5 . . 3  |-  ( Clsd `  ( J  tX  J
) )  C_  (sigaGen `  ( Clsd `  ( J  tX  J ) ) )
5854, 57sstri 3612 . 2  |-  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  C_  (sigaGen `  ( Clsd `  ( J  tX  J ) ) )
59 sigagenss2 30213 . 2  |-  ( ( U. ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) )  =  U. ( Clsd `  ( J  tX  J
) )  /\  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  C_  (sigaGen `  ( Clsd `  ( J  tX  J ) ) )  /\  ( Clsd `  ( J  tX  J
) )  e.  _V )  ->  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) 
C_  (sigaGen `  ( Clsd `  ( J  tX  J
) ) ) )
6011, 58, 55, 59mp3an 1424 1  |-  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) 
C_  (sigaGen `  ( Clsd `  ( J  tX  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   ran crn 5115    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   RRcr 9935   +oocpnf 10071   (,)cioo 12175   [,)cico 12177   topGenctg 16098   Topctop 20698   Clsdccld 20820    tX ctx 21363  sigaGencsigagen 30201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ico 12181  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-tx 21365  df-siga 30171  df-sigagen 30202
This theorem is referenced by:  sxbrsigalem4  30349
  Copyright terms: Public domain W3C validator