Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem2 Structured version   Visualization version   Unicode version

Theorem sxbrsigalem2 30348
Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of  ( RR  X.  RR ) is a subset of the sigma-algebra generated by the closed half-spaces of  ( RR  X.  RR ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
dya2ioc.2  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
Assertion
Ref Expression
sxbrsigalem2  |-  (sigaGen `  ran  R )  C_  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
Distinct variable groups:    x, n    x, I    v, u, I, x    u, n, v    R, n, x    x, J   
e, f, n, u, v, x
Allowed substitution hints:    R( v, u, e, f)    I( e, f, n)    J( v, u, e, f, n)

Proof of Theorem sxbrsigalem2
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4  |-  J  =  ( topGen `  ran  (,) )
2 dya2ioc.1 . . . 4  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
3 dya2ioc.2 . . . 4  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
41, 2, 3dya2iocucvr 30346 . . 3  |-  U. ran  R  =  ( RR  X.  RR )
5 sxbrsigalem0 30333 . . 3  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  =  ( RR  X.  RR )
64, 5eqtr4i 2647 . 2  |-  U. ran  R  =  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )
7 vex 3203 . . . . . 6  |-  u  e. 
_V
8 vex 3203 . . . . . 6  |-  v  e. 
_V
97, 8xpex 6962 . . . . 5  |-  ( u  X.  v )  e. 
_V
103, 9elrnmpt2 6773 . . . 4  |-  ( d  e.  ran  R  <->  E. u  e.  ran  I E. v  e.  ran  I  d  =  ( u  X.  v
) )
11 simpr 477 . . . . . . 7  |-  ( ( ( u  e.  ran  I  /\  v  e.  ran  I )  /\  d  =  ( u  X.  v ) )  -> 
d  =  ( u  X.  v ) )
121, 2dya2icobrsiga 30338 . . . . . . . . . . . . 13  |-  ran  I  C_ 𝔅
13 brsigasspwrn 30248 . . . . . . . . . . . . 13  |- 𝔅 
C_  ~P RR
1412, 13sstri 3612 . . . . . . . . . . . 12  |-  ran  I  C_ 
~P RR
1514sseli 3599 . . . . . . . . . . 11  |-  ( u  e.  ran  I  ->  u  e.  ~P RR )
1615elpwid 4170 . . . . . . . . . 10  |-  ( u  e.  ran  I  ->  u  C_  RR )
1714sseli 3599 . . . . . . . . . . 11  |-  ( v  e.  ran  I  -> 
v  e.  ~P RR )
1817elpwid 4170 . . . . . . . . . 10  |-  ( v  e.  ran  I  -> 
v  C_  RR )
19 xpinpreima2 29953 . . . . . . . . . 10  |-  ( ( u  C_  RR  /\  v  C_  RR )  ->  (
u  X.  v )  =  ( ( `' ( 1st  |`  ( RR  X.  RR ) )
" u )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) ) " v
) ) )
2016, 18, 19syl2an 494 . . . . . . . . 9  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  (
u  X.  v )  =  ( ( `' ( 1st  |`  ( RR  X.  RR ) )
" u )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) ) " v
) ) )
21 reex 10027 . . . . . . . . . . . . . . . . 17  |-  RR  e.  _V
2221mptex 6486 . . . . . . . . . . . . . . . 16  |-  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  e. 
_V
2322rnex 7100 . . . . . . . . . . . . . . 15  |-  ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  e.  _V
2421mptex 6486 . . . . . . . . . . . . . . . 16  |-  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  e. 
_V
2524rnex 7100 . . . . . . . . . . . . . . 15  |-  ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) )  e.  _V
2623, 25unex 6956 . . . . . . . . . . . . . 14  |-  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  e. 
_V
2726a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )  e.  _V )
2827sgsiga 30205 . . . . . . . . . . . 12  |-  ( T. 
->  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  e.  U. ran sigAlgebra )
2928trud 1493 . . . . . . . . . . 11  |-  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  e.  U. ran sigAlgebra
3029a1i 11 . . . . . . . . . 10  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )  e.  U. ran sigAlgebra )
31 1stpreima 29484 . . . . . . . . . . . . 13  |-  ( u 
C_  RR  ->  ( `' ( 1st  |`  ( RR  X.  RR ) )
" u )  =  ( u  X.  RR ) )
3216, 31syl 17 . . . . . . . . . . . 12  |-  ( u  e.  ran  I  -> 
( `' ( 1st  |`  ( RR  X.  RR ) ) " u
)  =  ( u  X.  RR ) )
33 ovex 6678 . . . . . . . . . . . . . 14  |-  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  +  1 )  / 
( 2 ^ n
) ) )  e. 
_V
342, 33elrnmpt2 6773 . . . . . . . . . . . . 13  |-  ( u  e.  ran  I  <->  E. x  e.  ZZ  E. n  e.  ZZ  u  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )
35 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  u  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  u  =  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
3635xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  u  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  ( u  X.  RR )  =  ( ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) )  X.  RR ) )
37 difxp1 5559 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  / 
( 2 ^ n
) ) [,) +oo )  \  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )  X.  RR )  =  ( (
( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  \ 
( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR ) )
38 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  x  e.  ZZ )
3938zred 11482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  x  e.  RR )
40 2rp 11837 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  2  e.  RR+
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  2  e.  RR+ )
42 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  ZZ )
4341, 42rpexpcld 13032 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2 ^ n
)  e.  RR+ )
4439, 43rerpdivcld 11903 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( x  /  (
2 ^ n ) )  e.  RR )
4544rexrd 10089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( x  /  (
2 ^ n ) )  e.  RR* )
46 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  1  e.  RR )
4739, 46readdcld 10069 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( x  +  1 )  e.  RR )
4847, 43rerpdivcld 11903 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( x  + 
1 )  /  (
2 ^ n ) )  e.  RR )
4948rexrd 10089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( x  + 
1 )  /  (
2 ^ n ) )  e.  RR* )
50 pnfxr 10092 . . . . . . . . . . . . . . . . . . . . . 22  |- +oo  e.  RR*
5150a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  -> +oo  e.  RR* )
5239lep1d 10955 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  x  <_  ( x  +  1 ) )
5339, 47, 43, 52lediv1dd 11930 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( x  /  (
2 ^ n ) )  <_  ( (
x  +  1 )  /  ( 2 ^ n ) ) )
54 pnfge 11964 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  +  1 )  /  ( 2 ^ n ) )  e.  RR*  ->  ( ( x  +  1 )  /  ( 2 ^ n ) )  <_ +oo )
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( x  + 
1 )  /  (
2 ^ n ) )  <_ +oo )
56 difico 29545 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( x  / 
( 2 ^ n
) )  e.  RR*  /\  ( ( x  + 
1 )  /  (
2 ^ n ) )  e.  RR*  /\ +oo  e.  RR* )  /\  (
( x  /  (
2 ^ n ) )  <_  ( (
x  +  1 )  /  ( 2 ^ n ) )  /\  ( ( x  + 
1 )  /  (
2 ^ n ) )  <_ +oo )
)  ->  ( (
( x  /  (
2 ^ n ) ) [,) +oo )  \  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )
5745, 49, 51, 53, 55, 56syl32anc 1334 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  \  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  =  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  +  1 )  / 
( 2 ^ n
) ) ) )
5857xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  \ 
( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) )  X.  RR )  =  ( (
( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) )  X.  RR ) )
5937, 58syl5reqr 2671 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) )  X.  RR )  =  ( (
( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  \ 
( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR ) ) )
6029a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  e.  U. ran sigAlgebra )
61 ssun1 3776 . . . . . . . . . . . . . . . . . . . . 21  |-  ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) 
C_  ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) )
62 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  /  (
2 ^ n ) ) [,) +oo )  X.  RR )  =  ( ( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )
63 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( e  =  ( x  / 
( 2 ^ n
) )  ->  (
e [,) +oo )  =  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )
6463xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( e  =  ( x  / 
( 2 ^ n
) )  ->  (
( e [,) +oo )  X.  RR )  =  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR ) )
6564eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( e  =  ( x  / 
( 2 ^ n
) )  ->  (
( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
e [,) +oo )  X.  RR )  <->  ( (
( x  /  (
2 ^ n ) ) [,) +oo )  X.  RR )  =  ( ( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR ) ) )
6665rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  /  (
2 ^ n ) )  e.  RR  /\  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
( x  /  (
2 ^ n ) ) [,) +oo )  X.  RR ) )  ->  E. e  e.  RR  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
e [,) +oo )  X.  RR ) )
6744, 62, 66sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  E. e  e.  RR  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
e [,) +oo )  X.  RR ) )
68 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  =  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )
69 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( e [,) +oo )  e. 
_V
7069, 21xpex 6962 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( e [,) +oo )  X.  RR )  e.  _V
7168, 70elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  e. 
ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  <->  E. e  e.  RR  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( ( e [,) +oo )  X.  RR ) )
7267, 71sylibr 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) )
7361, 72sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
74 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )  e.  _V  /\  (
( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )  ->  ( (
( x  /  (
2 ^ n ) ) [,) +oo )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
7526, 73, 74sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
76 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )  X.  RR )  =  ( ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )
77 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( e  =  ( ( x  +  1 )  / 
( 2 ^ n
) )  ->  (
e [,) +oo )  =  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )
7877xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( e  =  ( ( x  +  1 )  / 
( 2 ^ n
) )  ->  (
( e [,) +oo )  X.  RR )  =  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR ) )
7978eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( e  =  ( ( x  +  1 )  / 
( 2 ^ n
) )  ->  (
( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
e [,) +oo )  X.  RR )  <->  ( (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )  X.  RR )  =  ( ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo )  X.  RR ) ) )
8079rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( x  + 
1 )  /  (
2 ^ n ) )  e.  RR  /\  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )  X.  RR ) )  ->  E. e  e.  RR  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
e [,) +oo )  X.  RR ) )
8148, 76, 80sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  E. e  e.  RR  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( (
e [,) +oo )  X.  RR ) )
8268, 70elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  e. 
ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  <->  E. e  e.  RR  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  =  ( ( e [,) +oo )  X.  RR ) )
8381, 82sylibr 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) )
8461, 83sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
85 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )  e.  _V  /\  (
( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )  ->  ( (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
8626, 84, 85sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
87 difelsiga 30196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  e.  U. ran sigAlgebra  /\  (
( ( x  / 
( 2 ^ n
) ) [,) +oo )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  /\  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )  ->  (
( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  \  ( ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo )  X.  RR ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
8860, 75, 86, 87syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  X.  RR )  \  (
( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo )  X.  RR ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
8959, 88eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
9089adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  u  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  ( (
( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) )  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
9136, 90eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  u  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  ( u  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
9291ex 450 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( u  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) )  ->  ( u  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) ) )
9392rexlimivv 3036 . . . . . . . . . . . . 13  |-  ( E. x  e.  ZZ  E. n  e.  ZZ  u  =  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) )  ->  (
u  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
9434, 93sylbi 207 . . . . . . . . . . . 12  |-  ( u  e.  ran  I  -> 
( u  X.  RR )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
9532, 94eqeltrd 2701 . . . . . . . . . . 11  |-  ( u  e.  ran  I  -> 
( `' ( 1st  |`  ( RR  X.  RR ) ) " u
)  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
9695adantr 481 . . . . . . . . . 10  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  ( `' ( 1st  |`  ( RR  X.  RR ) )
" u )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
97 2ndpreima 29485 . . . . . . . . . . . . 13  |-  ( v 
C_  RR  ->  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" v )  =  ( RR  X.  v
) )
9818, 97syl 17 . . . . . . . . . . . 12  |-  ( v  e.  ran  I  -> 
( `' ( 2nd  |`  ( RR  X.  RR ) ) " v
)  =  ( RR 
X.  v ) )
992, 33elrnmpt2 6773 . . . . . . . . . . . . 13  |-  ( v  e.  ran  I  <->  E. x  e.  ZZ  E. n  e.  ZZ  v  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )
100 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  v  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  v  =  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
101100xpeq2d 5139 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  v  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  ( RR  X.  v )  =  ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  +  1 )  / 
( 2 ^ n
) ) ) ) )
102 difxp2 5560 . . . . . . . . . . . . . . . . . . 19  |-  ( RR 
X.  ( ( ( x  /  ( 2 ^ n ) ) [,) +oo )  \ 
( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) ) )  =  ( ( RR  X.  ( ( x  / 
( 2 ^ n
) ) [,) +oo ) )  \  ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) ) )
10357xpeq2d 5139 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( ( x  / 
( 2 ^ n
) ) [,) +oo )  \  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) ) )  =  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) ) )
104102, 103syl5reqr 2671 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  =  ( ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) ) 
\  ( RR  X.  ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) ) ) )
105 ssun2 3777 . . . . . . . . . . . . . . . . . . . . 21  |-  ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) )  C_  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )
106 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( RR 
X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )  =  ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )
107 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  =  ( x  / 
( 2 ^ n
) )  ->  (
f [,) +oo )  =  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )
108107xpeq2d 5139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  ( x  / 
( 2 ^ n
) )  ->  ( RR  X.  ( f [,) +oo ) )  =  ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) ) )
109108eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  ( x  / 
( 2 ^ n
) )  ->  (
( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( f [,) +oo ) )  <->  ( RR  X.  ( ( x  / 
( 2 ^ n
) ) [,) +oo ) )  =  ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) ) ) )
110109rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  /  (
2 ^ n ) )  e.  RR  /\  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) ) )  ->  E. f  e.  RR  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( f [,) +oo ) ) )
11144, 106, 110sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  E. f  e.  RR  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( f [,) +oo ) ) )
112 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  =  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) )
113 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f [,) +oo )  e. 
_V
11421, 113xpex 6962 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( RR 
X.  ( f [,) +oo ) )  e.  _V
115112, 114elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )  e.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  <->  E. f  e.  RR  ( RR  X.  ( ( x  / 
( 2 ^ n
) ) [,) +oo ) )  =  ( RR  X.  ( f [,) +oo ) ) )
116111, 115sylibr 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  e.  ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )
117105, 116sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
118 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )  e.  _V  /\  ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )  ->  ( RR  X.  ( ( x  / 
( 2 ^ n
) ) [,) +oo ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
11926, 117, 118sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
120 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( RR 
X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )  =  ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )
121 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  =  ( ( x  +  1 )  / 
( 2 ^ n
) )  ->  (
f [,) +oo )  =  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )
122121xpeq2d 5139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  ( ( x  +  1 )  / 
( 2 ^ n
) )  ->  ( RR  X.  ( f [,) +oo ) )  =  ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) ) )
123122eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  ( ( x  +  1 )  / 
( 2 ^ n
) )  ->  (
( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( f [,) +oo ) )  <->  ( RR  X.  ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) )  =  ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) ) ) )
124123rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( x  + 
1 )  /  (
2 ^ n ) )  e.  RR  /\  ( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) ) )  ->  E. f  e.  RR  ( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( f [,) +oo ) ) )
12548, 120, 124sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  E. f  e.  RR  ( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  =  ( RR 
X.  ( f [,) +oo ) ) )
126112, 114elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )  e.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  <->  E. f  e.  RR  ( RR  X.  ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) )  =  ( RR  X.  ( f [,) +oo ) ) )
127125, 126sylibr 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  e.  ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )
128105, 127sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
129 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )  e.  _V  /\  ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )  ->  ( RR  X.  ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
13026, 128, 129sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( ( x  + 
1 )  /  (
2 ^ n ) ) [,) +oo )
)  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
131 difelsiga 30196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  e.  U. ran sigAlgebra  /\  ( RR  X.  ( ( x  /  ( 2 ^ n ) ) [,) +oo ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )  /\  ( RR 
X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )  ->  (
( RR  X.  (
( x  /  (
2 ^ n ) ) [,) +oo )
)  \  ( RR  X.  ( ( ( x  +  1 )  / 
( 2 ^ n
) ) [,) +oo ) ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
13260, 119, 130, 131syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( RR  X.  ( ( x  / 
( 2 ^ n
) ) [,) +oo ) )  \  ( RR  X.  ( ( ( x  +  1 )  /  ( 2 ^ n ) ) [,) +oo ) ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
133104, 132eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( RR  X.  (
( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
134133adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  v  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  ( RR  X.  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
135101, 134eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  n  e.  ZZ )  /\  v  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) ) )  ->  ( RR  X.  v )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
136135ex 450 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  n  e.  ZZ )  ->  ( v  =  ( ( x  /  (
2 ^ n ) ) [,) ( ( x  +  1 )  /  ( 2 ^ n ) ) )  ->  ( RR  X.  v )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) ) )
137136rexlimivv 3036 . . . . . . . . . . . . 13  |-  ( E. x  e.  ZZ  E. n  e.  ZZ  v  =  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) )  ->  ( RR  X.  v )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
13899, 137sylbi 207 . . . . . . . . . . . 12  |-  ( v  e.  ran  I  -> 
( RR  X.  v
)  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
13998, 138eqeltrd 2701 . . . . . . . . . . 11  |-  ( v  e.  ran  I  -> 
( `' ( 2nd  |`  ( RR  X.  RR ) ) " v
)  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
140139adantl 482 . . . . . . . . . 10  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" v )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
141 inelsiga 30198 . . . . . . . . . 10  |-  ( ( (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  e.  U. ran sigAlgebra  /\  ( `' ( 1st  |`  ( RR  X.  RR ) )
" u )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )  /\  ( `' ( 2nd  |`  ( RR  X.  RR ) ) "
v )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )  ->  (
( `' ( 1st  |`  ( RR  X.  RR ) ) " u
)  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) ) "
v ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
14230, 96, 140, 141syl3anc 1326 . . . . . . . . 9  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  (
( `' ( 1st  |`  ( RR  X.  RR ) ) " u
)  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) ) "
v ) )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
14320, 142eqeltrd 2701 . . . . . . . 8  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  (
u  X.  v )  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
144143adantr 481 . . . . . . 7  |-  ( ( ( u  e.  ran  I  /\  v  e.  ran  I )  /\  d  =  ( u  X.  v ) )  -> 
( u  X.  v
)  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
14511, 144eqeltrd 2701 . . . . . 6  |-  ( ( ( u  e.  ran  I  /\  v  e.  ran  I )  /\  d  =  ( u  X.  v ) )  -> 
d  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
146145ex 450 . . . . 5  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  (
d  =  ( u  X.  v )  -> 
d  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) ) )
147146rexlimivv 3036 . . . 4  |-  ( E. u  e.  ran  I E. v  e.  ran  I  d  =  (
u  X.  v )  ->  d  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) ) )
14810, 147sylbi 207 . . 3  |-  ( d  e.  ran  R  -> 
d  e.  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) ) )
149148ssriv 3607 . 2  |-  ran  R  C_  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
150 sigagenss2 30213 . 2  |-  ( ( U. ran  R  = 
U. ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) )  /\  ran  R  C_  (sigaGen `  ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) ) )  /\  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  e. 
_V )  ->  (sigaGen ` 
ran  R )  C_  (sigaGen `  ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) ) ) )
1516, 149, 26, 150mp3an 1424 1  |-  (sigaGen `  ran  R )  C_  (sigaGen `  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    <_ cle 10075    / cdiv 10684   2c2 11070   ZZcz 11377   RR+crp 11832   (,)cioo 12175   [,)cico 12177   ^cexp 12860   topGenctg 16098  sigAlgebracsiga 30170  sigaGencsigagen 30201  𝔅cbrsiga 30244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-cfil 23053  df-cmet 23055  df-cms 23132  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-logb 24503  df-siga 30171  df-sigagen 30202  df-brsiga 30245
This theorem is referenced by:  sxbrsigalem4  30349
  Copyright terms: Public domain W3C validator