Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcclem Structured version   Visualization version   Unicode version

Theorem smfpimcclem 41013
Description: Lemma for smfpimcc 41014 given the choice function  C. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcclem.n  |-  F/ n ph
smfpimcclem.z  |-  Z  e.  V
smfpimcclem.s  |-  ( ph  ->  S  e.  W )
smfpimcclem.c  |-  ( (
ph  /\  y  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )  ->  ( C `  y )  e.  y )
smfpimcclem.h  |-  H  =  ( n  e.  Z  |->  ( C `  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } ) )
Assertion
Ref Expression
smfpimcclem  |-  ( ph  ->  E. h ( h : Z --> S  /\  A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( h `  n )  i^i  dom  ( F `  n ) ) ) )
Distinct variable groups:    A, h    A, s, y    C, s, y    h, F    F, s, y    h, H    S, h, n    S, s, y, n    h, Z, n   
y, Z    ph, y
Allowed substitution hints:    ph( h, n, s)    A( n)    C( h, n)    F( n)    H( y, n, s)    V( y, h, n, s)    W( y, h, n, s)    Z( s)

Proof of Theorem smfpimcclem
StepHypRef Expression
1 smfpimcclem.n . . 3  |-  F/ n ph
2 nfcv 2764 . . . . 5  |-  F/_ s S
32ssrab2f 39300 . . . 4  |-  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } 
C_  S
4 eqid 2622 . . . . . . 7  |-  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) }  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }
5 smfpimcclem.s . . . . . . 7  |-  ( ph  ->  S  e.  W )
64, 5rabexd 4814 . . . . . 6  |-  ( ph  ->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) }  e.  _V )
76adantr 481 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) }  e.  _V )
8 simpl 473 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ph )
9 simpr 477 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
10 eqid 2622 . . . . . . . 8  |-  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  =  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )
1110elrnmpt1 5374 . . . . . . 7  |-  ( ( n  e.  Z  /\  { s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) }  e.  _V )  ->  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } ) )
129, 7, 11syl2anc 693 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } ) )
138, 12jca 554 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( ph  /\  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } ) ) )
14 eleq1 2689 . . . . . . . 8  |-  ( y  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  ->  ( y  e. 
ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) } )  <->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) ) )
1514anbi2d 740 . . . . . . 7  |-  ( y  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  ->  ( ( ph  /\  y  e.  ran  (
n  e.  Z  |->  { s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } ) )  <-> 
( ph  /\  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } ) ) ) )
16 fveq2 6191 . . . . . . . 8  |-  ( y  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  ->  ( C `  y )  =  ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } ) )
17 id 22 . . . . . . . 8  |-  ( y  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  ->  y  =  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } )
1816, 17eleq12d 2695 . . . . . . 7  |-  ( y  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  ->  ( ( C `
 y )  e.  y  <->  ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  e. 
{ s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )
1915, 18imbi12d 334 . . . . . 6  |-  ( y  =  { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) }  ->  ( ( (
ph  /\  y  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )  ->  ( C `  y )  e.  y )  <->  ( ( ph  /\ 
{ s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )  ->  ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  e. 
{ s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) ) )
20 smfpimcclem.c . . . . . 6  |-  ( (
ph  /\  y  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )  ->  ( C `  y )  e.  y )
2119, 20vtoclg 3266 . . . . 5  |-  ( { s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) }  e.  _V  ->  ( ( ph  /\  { s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) }  e.  ran  ( n  e.  Z  |->  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )  ->  ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  e. 
{ s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )
227, 13, 21sylc 65 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  e.  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )
233, 22sseldi 3601 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  e.  S )
24 smfpimcclem.h . . 3  |-  H  =  ( n  e.  Z  |->  ( C `  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } ) )
251, 23, 24fmptdf 6387 . 2  |-  ( ph  ->  H : Z --> S )
26 nfcv 2764 . . . . . . . . 9  |-  F/_ s C
27 nfrab1 3122 . . . . . . . . 9  |-  F/_ s { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) }
2826, 27nffv 6198 . . . . . . . 8  |-  F/_ s
( C `  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } )
29 nfcv 2764 . . . . . . . . 9  |-  F/_ s
( `' ( F `
 n ) " A )
30 nfcv 2764 . . . . . . . . . 10  |-  F/_ s dom  ( F `  n
)
3128, 30nfin 3820 . . . . . . . . 9  |-  F/_ s
( ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  i^i 
dom  ( F `  n ) )
3229, 31nfeq 2776 . . . . . . . 8  |-  F/ s ( `' ( F `
 n ) " A )  =  ( ( C `  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } )  i^i 
dom  ( F `  n ) )
33 ineq1 3807 . . . . . . . . 9  |-  ( s  =  ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  -> 
( s  i^i  dom  ( F `  n ) )  =  ( ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  i^i  dom  ( F `  n )
) )
3433eqeq2d 2632 . . . . . . . 8  |-  ( s  =  ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  -> 
( ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) )  <->  ( `' ( F `  n )
" A )  =  ( ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  i^i 
dom  ( F `  n ) ) ) )
3528, 2, 32, 34elrabf 3360 . . . . . . 7  |-  ( ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  e.  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) }  <-> 
( ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } )  e.  S  /\  ( `' ( F `  n
) " A )  =  ( ( C `
 { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) } )  i^i  dom  ( F `  n )
) ) )
3622, 35sylib 208 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  (
( C `  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } )  e.  S  /\  ( `' ( F `  n
) " A )  =  ( ( C `
 { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) } )  i^i  dom  ( F `  n )
) ) )
3736simprd 479 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( `' ( F `  n ) " A
)  =  ( ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  i^i  dom  ( F `  n )
) )
3824a1i 11 . . . . . . 7  |-  ( ph  ->  H  =  ( n  e.  Z  |->  ( C `
 { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) } ) ) )
3922elexd 3214 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ( C `  { s  e.  S  |  ( `' ( F `  n ) " A
)  =  ( s  i^i  dom  ( F `  n ) ) } )  e.  _V )
4038, 39fvmpt2d 6293 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( H `  n )  =  ( C `  { s  e.  S  |  ( `' ( F `  n )
" A )  =  ( s  i^i  dom  ( F `  n ) ) } ) )
4140ineq1d 3813 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( H `  n
)  i^i  dom  ( F `
 n ) )  =  ( ( C `
 { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) } )  i^i  dom  ( F `  n )
) )
4237, 41eqtr4d 2659 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( `' ( F `  n ) " A
)  =  ( ( H `  n )  i^i  dom  ( F `  n ) ) )
4342ex 450 . . 3  |-  ( ph  ->  ( n  e.  Z  ->  ( `' ( F `
 n ) " A )  =  ( ( H `  n
)  i^i  dom  ( F `
 n ) ) ) )
441, 43ralrimi 2957 . 2  |-  ( ph  ->  A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( H `  n )  i^i  dom  ( F `  n ) ) )
45 smfpimcclem.z . . . . . 6  |-  Z  e.  V
4645elexi 3213 . . . . 5  |-  Z  e. 
_V
4746mptex 6486 . . . 4  |-  ( n  e.  Z  |->  ( C `
 { s  e.  S  |  ( `' ( F `  n
) " A )  =  ( s  i^i 
dom  ( F `  n ) ) } ) )  e.  _V
4824, 47eqeltri 2697 . . 3  |-  H  e. 
_V
49 feq1 6026 . . . 4  |-  ( h  =  H  ->  (
h : Z --> S  <->  H : Z
--> S ) )
50 nfcv 2764 . . . . . 6  |-  F/_ n h
51 nfmpt1 4747 . . . . . . 7  |-  F/_ n
( n  e.  Z  |->  ( C `  {
s  e.  S  | 
( `' ( F `
 n ) " A )  =  ( s  i^i  dom  ( F `  n )
) } ) )
5224, 51nfcxfr 2762 . . . . . 6  |-  F/_ n H
5350, 52nfeq 2776 . . . . 5  |-  F/ n  h  =  H
54 fveq1 6190 . . . . . . 7  |-  ( h  =  H  ->  (
h `  n )  =  ( H `  n ) )
5554ineq1d 3813 . . . . . 6  |-  ( h  =  H  ->  (
( h `  n
)  i^i  dom  ( F `
 n ) )  =  ( ( H `
 n )  i^i 
dom  ( F `  n ) ) )
5655eqeq2d 2632 . . . . 5  |-  ( h  =  H  ->  (
( `' ( F `
 n ) " A )  =  ( ( h `  n
)  i^i  dom  ( F `
 n ) )  <-> 
( `' ( F `
 n ) " A )  =  ( ( H `  n
)  i^i  dom  ( F `
 n ) ) ) )
5753, 56ralbid 2983 . . . 4  |-  ( h  =  H  ->  ( A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( h `  n )  i^i  dom  ( F `  n ) )  <->  A. n  e.  Z  ( `' ( F `  n )
" A )  =  ( ( H `  n )  i^i  dom  ( F `  n ) ) ) )
5849, 57anbi12d 747 . . 3  |-  ( h  =  H  ->  (
( h : Z --> S  /\  A. n  e.  Z  ( `' ( F `  n )
" A )  =  ( ( h `  n )  i^i  dom  ( F `  n ) ) )  <->  ( H : Z --> S  /\  A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( H `  n )  i^i  dom  ( F `  n ) ) ) ) )
5948, 58spcev 3300 . 2  |-  ( ( H : Z --> S  /\  A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( H `  n )  i^i  dom  ( F `  n ) ) )  ->  E. h ( h : Z --> S  /\  A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( h `  n )  i^i  dom  ( F `  n ) ) ) )
6025, 44, 59syl2anc 693 1  |-  ( ph  ->  E. h ( h : Z --> S  /\  A. n  e.  Z  ( `' ( F `  n ) " A
)  =  ( ( h `  n )  i^i  dom  ( F `  n ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    i^i cin 3573    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  smfpimcc  41014
  Copyright terms: Public domain W3C validator