| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpssun | Structured version Visualization version Unicode version | ||
| Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| sorpssun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 796 |
. . 3
| |
| 2 | ssequn1 3783 |
. . . 4
| |
| 3 | eleq1 2689 |
. . . 4
| |
| 4 | 2, 3 | sylbi 207 |
. . 3
|
| 5 | 1, 4 | syl5ibrcom 237 |
. 2
|
| 6 | simprl 794 |
. . 3
| |
| 7 | ssequn2 3786 |
. . . 4
| |
| 8 | eleq1 2689 |
. . . 4
| |
| 9 | 7, 8 | sylbi 207 |
. . 3
|
| 10 | 6, 9 | syl5ibrcom 237 |
. 2
|
| 11 | sorpssi 6943 |
. 2
| |
| 12 | 5, 10, 11 | mpjaod 396 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-so 5036 df-xp 5120 df-rel 5121 df-rpss 6937 |
| This theorem is referenced by: finsschain 8273 lbsextlem2 19159 lbsextlem3 19160 filssufilg 21715 |
| Copyright terms: Public domain | W3C validator |