MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsschain Structured version   Visualization version   Unicode version

Theorem finsschain 8273
Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 21849 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
finsschain  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( B  e.  Fin  /\  B  C_  U. A ) )  ->  E. z  e.  A  B  C_  z )
Distinct variable groups:    z, A    z, B

Proof of Theorem finsschain
Dummy variables  a 
b  c  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3626 . . . . . 6  |-  ( a  =  (/)  ->  ( a 
C_  U. A  <->  (/)  C_  U. A
) )
2 sseq1 3626 . . . . . . 7  |-  ( a  =  (/)  ->  ( a 
C_  z  <->  (/)  C_  z
) )
32rexbidv 3052 . . . . . 6  |-  ( a  =  (/)  ->  ( E. z  e.  A  a 
C_  z  <->  E. z  e.  A  (/)  C_  z
) )
41, 3imbi12d 334 . . . . 5  |-  ( a  =  (/)  ->  ( ( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) ) )
54imbi2d 330 . . . 4  |-  ( a  =  (/)  ->  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) ) ) )
6 sseq1 3626 . . . . . 6  |-  ( a  =  b  ->  (
a  C_  U. A  <->  b  C_  U. A ) )
7 sseq1 3626 . . . . . . 7  |-  ( a  =  b  ->  (
a  C_  z  <->  b  C_  z ) )
87rexbidv 3052 . . . . . 6  |-  ( a  =  b  ->  ( E. z  e.  A  a  C_  z  <->  E. z  e.  A  b  C_  z ) )
96, 8imbi12d 334 . . . . 5  |-  ( a  =  b  ->  (
( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) ) )
109imbi2d 330 . . . 4  |-  ( a  =  b  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) ) ) )
11 sseq1 3626 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  U. A  <->  ( b  u. 
{ c } ) 
C_  U. A ) )
12 sseq1 3626 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  z 
<->  ( b  u.  {
c } )  C_  z ) )
1312rexbidv 3052 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( E. z  e.  A  a  C_  z 
<->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
1411, 13imbi12d 334 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a 
C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
1514imbi2d 330 . . . 4  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) ) )
16 sseq1 3626 . . . . . 6  |-  ( a  =  B  ->  (
a  C_  U. A  <->  B  C_  U. A
) )
17 sseq1 3626 . . . . . . 7  |-  ( a  =  B  ->  (
a  C_  z  <->  B  C_  z
) )
1817rexbidv 3052 . . . . . 6  |-  ( a  =  B  ->  ( E. z  e.  A  a  C_  z  <->  E. z  e.  A  B  C_  z
) )
1916, 18imbi12d 334 . . . . 5  |-  ( a  =  B  ->  (
( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
2019imbi2d 330 . . . 4  |-  ( a  =  B  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) ) )
21 0ss 3972 . . . . . . . 8  |-  (/)  C_  z
2221rgenw 2924 . . . . . . 7  |-  A. z  e.  A  (/)  C_  z
23 r19.2z 4060 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. z  e.  A  (/)  C_  z
)  ->  E. z  e.  A  (/)  C_  z
)
2422, 23mpan2 707 . . . . . 6  |-  ( A  =/=  (/)  ->  E. z  e.  A  (/)  C_  z
)
2524adantr 481 . . . . 5  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  E. z  e.  A  (/)  C_  z
)
2625a1d 25 . . . 4  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) )
27 id 22 . . . . . . . . 9  |-  ( ( b  u.  { c } )  C_  U. A  ->  ( b  u.  {
c } )  C_  U. A )
2827unssad 3790 . . . . . . . 8  |-  ( ( b  u.  { c } )  C_  U. A  ->  b  C_  U. A )
2928imim1i 63 . . . . . . 7  |-  ( ( b  C_  U. A  ->  E. z  e.  A  b  C_  z )  -> 
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  b  C_  z ) )
30 sseq2 3627 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
b  C_  z  <->  b  C_  w ) )
3130cbvrexv 3172 . . . . . . . . . 10  |-  ( E. z  e.  A  b 
C_  z  <->  E. w  e.  A  b  C_  w )
32 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( b  u.  {
c } )  C_  U. A )
3332unssbd 3791 . . . . . . . . . . . . 13  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  ->  { c }  C_  U. A )
34 vex 3203 . . . . . . . . . . . . . 14  |-  c  e. 
_V
3534snss 4316 . . . . . . . . . . . . 13  |-  ( c  e.  U. A  <->  { c }  C_  U. A )
3633, 35sylibr 224 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
c  e.  U. A
)
37 eluni2 4440 . . . . . . . . . . . 12  |-  ( c  e.  U. A  <->  E. u  e.  A  c  e.  u )
3836, 37sylib 208 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  ->  E. u  e.  A  c  e.  u )
39 reeanv 3107 . . . . . . . . . . . 12  |-  ( E. u  e.  A  E. w  e.  A  (
c  e.  u  /\  b  C_  w )  <->  ( E. u  e.  A  c  e.  u  /\  E. w  e.  A  b  C_  w ) )
40 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  -> [ C.]  Or  A
)
41 simprlr 803 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  w  e.  A )
42 simprll 802 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  u  e.  A )
43 sorpssun 6944 . . . . . . . . . . . . . . . 16  |-  ( ( [ C.]  Or  A  /\  (
w  e.  A  /\  u  e.  A )
)  ->  ( w  u.  u )  e.  A
)
4440, 41, 42, 43syl12anc 1324 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  ( w  u.  u )  e.  A
)
45 simprrr 805 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  b  C_  w )
46 simprrl 804 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  c  e.  u )
4746snssd 4340 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  { c }  C_  u )
48 unss12 3785 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  w  /\  { c }  C_  u
)  ->  ( b  u.  { c } ) 
C_  ( w  u.  u ) )
4945, 47, 48syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  ( b  u.  { c } ) 
C_  ( w  u.  u ) )
50 sseq2 3627 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  u.  u )  ->  (
( b  u.  {
c } )  C_  z 
<->  ( b  u.  {
c } )  C_  ( w  u.  u
) ) )
5150rspcev 3309 . . . . . . . . . . . . . . 15  |-  ( ( ( w  u.  u
)  e.  A  /\  ( b  u.  {
c } )  C_  ( w  u.  u
) )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z )
5244, 49, 51syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z )
5352expr 643 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( u  e.  A  /\  w  e.  A
) )  ->  (
( c  e.  u  /\  b  C_  w )  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5453rexlimdvva 3038 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( E. u  e.  A  E. w  e.  A  ( c  e.  u  /\  b  C_  w )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) )
5539, 54syl5bir 233 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( ( E. u  e.  A  c  e.  u  /\  E. w  e.  A  b  C_  w
)  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) )
5638, 55mpand 711 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( E. w  e.  A  b  C_  w  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5731, 56syl5bi 232 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( E. z  e.  A  b  C_  z  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5857ex 450 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  ( E. z  e.  A  b  C_  z  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
5958a2d 29 . . . . . . 7  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
( b  u.  {
c } )  C_  U. A  ->  E. z  e.  A  b  C_  z )  ->  (
( b  u.  {
c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
6029, 59syl5 34 . . . . . 6  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  C_  U. A  ->  E. z  e.  A  b  C_  z )  -> 
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
6160a2i 14 . . . . 5  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) )  -> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
6261a1i 11 . . . 4  |-  ( b  e.  Fin  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) )  -> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) ) )
635, 10, 15, 20, 26, 62findcard2 8200 . . 3  |-  ( B  e.  Fin  ->  (
( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
6463com12 32 . 2  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  e.  Fin  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
6564imp32 449 1  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( B  e.  Fin  /\  B  C_  U. A ) )  ->  E. z  e.  A  B  C_  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436    Or wor 5034   [ C.] crpss 6936   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-rpss 6937  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  alexsubALTlem2  21852
  Copyright terms: Public domain W3C validator