| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpssuni | Structured version Visualization version Unicode version | ||
| Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| sorpssuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sorpssi 6943 |
. . . . . . . . . 10
| |
| 2 | 1 | anassrs 680 |
. . . . . . . . 9
|
| 3 | sspss 3706 |
. . . . . . . . . . 11
| |
| 4 | orel1 397 |
. . . . . . . . . . . 12
| |
| 5 | eqimss2 3658 |
. . . . . . . . . . . 12
| |
| 6 | 4, 5 | syl6com 37 |
. . . . . . . . . . 11
|
| 7 | 3, 6 | sylbi 207 |
. . . . . . . . . 10
|
| 8 | ax-1 6 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | jaoi 394 |
. . . . . . . . 9
|
| 10 | 2, 9 | syl 17 |
. . . . . . . 8
|
| 11 | 10 | ralimdva 2962 |
. . . . . . 7
|
| 12 | 11 | 3impia 1261 |
. . . . . 6
|
| 13 | unissb 4469 |
. . . . . 6
| |
| 14 | 12, 13 | sylibr 224 |
. . . . 5
|
| 15 | elssuni 4467 |
. . . . . 6
| |
| 16 | 15 | 3ad2ant2 1083 |
. . . . 5
|
| 17 | 14, 16 | eqssd 3620 |
. . . 4
|
| 18 | simp2 1062 |
. . . 4
| |
| 19 | 17, 18 | eqeltrd 2701 |
. . 3
|
| 20 | 19 | rexlimdv3a 3033 |
. 2
|
| 21 | elssuni 4467 |
. . . . 5
| |
| 22 | ssnpss 3710 |
. . . . 5
| |
| 23 | 21, 22 | syl 17 |
. . . 4
|
| 24 | 23 | rgen 2922 |
. . 3
|
| 25 | psseq1 3694 |
. . . . . 6
| |
| 26 | 25 | notbid 308 |
. . . . 5
|
| 27 | 26 | ralbidv 2986 |
. . . 4
|
| 28 | 27 | rspcev 3309 |
. . 3
|
| 29 | 24, 28 | mpan2 707 |
. 2
|
| 30 | 20, 29 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-so 5036 df-xp 5120 df-rel 5121 df-rpss 6937 |
| This theorem is referenced by: fin2i2 9140 isfin2-2 9141 fin12 9235 |
| Copyright terms: Public domain | W3C validator |