| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscpwex | Structured version Visualization version Unicode version | ||
| Description: An analogue of pwex 4848
for the subcategory subset relation: The
collection of subcategory subsets of a given set |
| Ref | Expression |
|---|---|
| sscpwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 6678 |
. 2
| |
| 2 | brssc 16474 |
. . . 4
| |
| 3 | simpl 473 |
. . . . . . . . . 10
| |
| 4 | vex 3203 |
. . . . . . . . . . 11
| |
| 5 | 4, 4 | xpex 6962 |
. . . . . . . . . 10
|
| 6 | fnex 6481 |
. . . . . . . . . 10
| |
| 7 | 3, 5, 6 | sylancl 694 |
. . . . . . . . 9
|
| 8 | rnexg 7098 |
. . . . . . . . 9
| |
| 9 | uniexg 6955 |
. . . . . . . . 9
| |
| 10 | pwexg 4850 |
. . . . . . . . 9
| |
| 11 | 7, 8, 9, 10 | 4syl 19 |
. . . . . . . 8
|
| 12 | fndm 5990 |
. . . . . . . . . 10
| |
| 13 | 12 | adantr 481 |
. . . . . . . . 9
|
| 14 | 13, 5 | syl6eqel 2709 |
. . . . . . . 8
|
| 15 | ss2ixp 7921 |
. . . . . . . . . . 11
| |
| 16 | fvssunirn 6217 |
. . . . . . . . . . . . 13
| |
| 17 | sspwb 4917 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | mpbi 220 |
. . . . . . . . . . . 12
|
| 19 | 18 | a1i 11 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | mprg 2926 |
. . . . . . . . . 10
|
| 21 | simprr 796 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | sseldi 3601 |
. . . . . . . . 9
|
| 23 | vex 3203 |
. . . . . . . . . 10
| |
| 24 | 23 | elixpconst 7916 |
. . . . . . . . 9
|
| 25 | 22, 24 | sylib 208 |
. . . . . . . 8
|
| 26 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 27 | 26 | ad2antrl 764 |
. . . . . . . . . 10
|
| 28 | xpss12 5225 |
. . . . . . . . . 10
| |
| 29 | 27, 27, 28 | syl2anc 693 |
. . . . . . . . 9
|
| 30 | 29, 13 | sseqtr4d 3642 |
. . . . . . . 8
|
| 31 | elpm2r 7875 |
. . . . . . . 8
| |
| 32 | 11, 14, 25, 30, 31 | syl22anc 1327 |
. . . . . . 7
|
| 33 | 32 | rexlimdvaa 3032 |
. . . . . 6
|
| 34 | 33 | imp 445 |
. . . . 5
|
| 35 | 34 | exlimiv 1858 |
. . . 4
|
| 36 | 2, 35 | sylbi 207 |
. . 3
|
| 37 | 36 | abssi 3677 |
. 2
|
| 38 | 1, 37 | ssexi 4803 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-pm 7860 df-ixp 7909 df-ssc 16470 |
| This theorem is referenced by: issubc 16495 |
| Copyright terms: Public domain | W3C validator |