MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscpwex Structured version   Visualization version   Unicode version

Theorem sscpwex 16475
Description: An analogue of pwex 4848 for the subcategory subset relation: The collection of subcategory subsets of a given set  J is a set. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscpwex  |-  { h  |  h  C_cat  J }  e.  _V
Distinct variable group:    h, J

Proof of Theorem sscpwex
Dummy variables  s 
t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . 2  |-  ( ~P
U. ran  J  ^pm  dom 
J )  e.  _V
2 brssc 16474 . . . 4  |-  ( h 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t
h  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) ) )
3 simpl 473 . . . . . . . . . 10  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  J  Fn  ( t  X.  t
) )
4 vex 3203 . . . . . . . . . . 11  |-  t  e. 
_V
54, 4xpex 6962 . . . . . . . . . 10  |-  ( t  X.  t )  e. 
_V
6 fnex 6481 . . . . . . . . . 10  |-  ( ( J  Fn  ( t  X.  t )  /\  ( t  X.  t
)  e.  _V )  ->  J  e.  _V )
73, 5, 6sylancl 694 . . . . . . . . 9  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  J  e.  _V )
8 rnexg 7098 . . . . . . . . 9  |-  ( J  e.  _V  ->  ran  J  e.  _V )
9 uniexg 6955 . . . . . . . . 9  |-  ( ran 
J  e.  _V  ->  U.
ran  J  e.  _V )
10 pwexg 4850 . . . . . . . . 9  |-  ( U. ran  J  e.  _V  ->  ~P
U. ran  J  e.  _V )
117, 8, 9, 104syl 19 . . . . . . . 8  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  ~P U.
ran  J  e.  _V )
12 fndm 5990 . . . . . . . . . 10  |-  ( J  Fn  ( t  X.  t )  ->  dom  J  =  ( t  X.  t ) )
1312adantr 481 . . . . . . . . 9  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  dom  J  =  ( t  X.  t ) )
1413, 5syl6eqel 2709 . . . . . . . 8  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  dom  J  e.  _V )
15 ss2ixp 7921 . . . . . . . . . . 11  |-  ( A. x  e.  ( s  X.  s ) ~P ( J `  x )  C_ 
~P U. ran  J  ->  X_ x  e.  ( s  X.  s ) ~P ( J `  x
)  C_  X_ x  e.  ( s  X.  s
) ~P U. ran  J )
16 fvssunirn 6217 . . . . . . . . . . . . 13  |-  ( J `
 x )  C_  U.
ran  J
17 sspwb 4917 . . . . . . . . . . . . 13  |-  ( ( J `  x ) 
C_  U. ran  J  <->  ~P ( J `  x )  C_ 
~P U. ran  J )
1816, 17mpbi 220 . . . . . . . . . . . 12  |-  ~P ( J `  x )  C_ 
~P U. ran  J
1918a1i 11 . . . . . . . . . . 11  |-  ( x  e.  ( s  X.  s )  ->  ~P ( J `  x ) 
C_  ~P U. ran  J
)
2015, 19mprg 2926 . . . . . . . . . 10  |-  X_ x  e.  ( s  X.  s
) ~P ( J `
 x )  C_  X_ x  e.  ( s  X.  s ) ~P
U. ran  J
21 simprr 796 . . . . . . . . . 10  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x ) )
2220, 21sseldi 3601 . . . . . . . . 9  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  h  e.  X_ x  e.  ( s  X.  s ) ~P U. ran  J
)
23 vex 3203 . . . . . . . . . 10  |-  h  e. 
_V
2423elixpconst 7916 . . . . . . . . 9  |-  ( h  e.  X_ x  e.  ( s  X.  s ) ~P U. ran  J  <->  h : ( s  X.  s ) --> ~P U. ran  J )
2522, 24sylib 208 . . . . . . . 8  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  h : ( s  X.  s ) --> ~P U. ran  J )
26 elpwi 4168 . . . . . . . . . . 11  |-  ( s  e.  ~P t  -> 
s  C_  t )
2726ad2antrl 764 . . . . . . . . . 10  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  s  C_  t )
28 xpss12 5225 . . . . . . . . . 10  |-  ( ( s  C_  t  /\  s  C_  t )  -> 
( s  X.  s
)  C_  ( t  X.  t ) )
2927, 27, 28syl2anc 693 . . . . . . . . 9  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  (
s  X.  s ) 
C_  ( t  X.  t ) )
3029, 13sseqtr4d 3642 . . . . . . . 8  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  (
s  X.  s ) 
C_  dom  J )
31 elpm2r 7875 . . . . . . . 8  |-  ( ( ( ~P U. ran  J  e.  _V  /\  dom  J  e.  _V )  /\  ( h : ( s  X.  s ) --> ~P U. ran  J  /\  ( s  X.  s
)  C_  dom  J ) )  ->  h  e.  ( ~P U. ran  J  ^pm  dom  J ) )
3211, 14, 25, 30, 31syl22anc 1327 . . . . . . 7  |-  ( ( J  Fn  ( t  X.  t )  /\  ( s  e.  ~P t  /\  h  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
) )  ->  h  e.  ( ~P U. ran  J 
^pm  dom  J ) )
3332rexlimdvaa 3032 . . . . . 6  |-  ( J  Fn  ( t  X.  t )  ->  ( E. s  e.  ~P  t h  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x )  ->  h  e.  ( ~P U.
ran  J  ^pm  dom  J
) ) )
3433imp 445 . . . . 5  |-  ( ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t
h  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) )  ->  h  e.  ( ~P U. ran  J  ^pm  dom  J ) )
3534exlimiv 1858 . . . 4  |-  ( E. t ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t h  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) )  ->  h  e.  ( ~P U.
ran  J  ^pm  dom  J
) )
362, 35sylbi 207 . . 3  |-  ( h 
C_cat  J  ->  h  e.  ( ~P U. ran  J  ^pm  dom  J ) )
3736abssi 3677 . 2  |-  { h  |  h  C_cat  J }  C_  ( ~P U. ran  J 
^pm  dom  J )
381, 37ssexi 4803 1  |-  { h  |  h  C_cat  J }  e.  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   X_cixp 7908    C_cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-ixp 7909  df-ssc 16470
This theorem is referenced by:  issubc  16495
  Copyright terms: Public domain W3C validator