MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubc Structured version   Visualization version   Unicode version

Theorem subsubc 16513
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
subsubc.d  |-  D  =  ( C  |`cat  H )
Assertion
Ref Expression
subsubc  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  e.  (Subcat `  C )  /\  J  C_cat  H ) ) )

Proof of Theorem subsubc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6  |-  ( J  e.  (Subcat `  D
)  ->  J  e.  (Subcat `  D ) )
2 eqid 2622 . . . . . 6  |-  ( Hom f  `  D )  =  ( Hom f  `  D )
31, 2subcssc 16500 . . . . 5  |-  ( J  e.  (Subcat `  D
)  ->  J  C_cat  ( Hom f  `  D ) )
4 subsubc.d . . . . . . 7  |-  D  =  ( C  |`cat  H )
5 eqid 2622 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
6 subcrcl 16476 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  C  e.  Cat )
7 id 22 . . . . . . . 8  |-  ( H  e.  (Subcat `  C
)  ->  H  e.  (Subcat `  C ) )
8 eqidd 2623 . . . . . . . 8  |-  ( H  e.  (Subcat `  C
)  ->  dom  dom  H  =  dom  dom  H )
97, 8subcfn 16501 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  H  Fn  ( dom  dom  H  X.  dom  dom  H ) )
107, 9, 5subcss1 16502 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  dom  dom  H  C_  ( Base `  C
) )
114, 5, 6, 9, 10reschomf 16491 . . . . . 6  |-  ( H  e.  (Subcat `  C
)  ->  H  =  ( Hom f  `  D ) )
1211breq2d 4665 . . . . 5  |-  ( H  e.  (Subcat `  C
)  ->  ( J  C_cat  H  <-> 
J  C_cat  ( Hom f  `  D ) ) )
133, 12syl5ibr 236 . . . 4  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  ->  J  C_cat  H ) )
1413pm4.71rd 667 . . 3  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  C_cat  H  /\  J  e.  (Subcat `  D )
) ) )
15 simpr 477 . . . . . . . 8  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  C_cat  H )
16 simpl 473 . . . . . . . . 9  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  H  e.  (Subcat `  C ) )
17 eqid 2622 . . . . . . . . 9  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
1816, 17subcssc 16500 . . . . . . . 8  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  H  C_cat  ( Hom f  `  C ) )
19 ssctr 16485 . . . . . . . 8  |-  ( ( J  C_cat  H  /\  H  C_cat  ( Hom f  `  C ) )  ->  J  C_cat  ( Hom f  `  C ) )
2015, 18, 19syl2anc 693 . . . . . . 7  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  C_cat  ( Hom f  `  C ) )
2112biimpa 501 . . . . . . 7  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  C_cat  ( Hom f  `  D ) )
2220, 212thd 255 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  C_cat  ( Hom f  `  C )  <->  J  C_cat  ( Hom f  `  D ) ) )
2316adantr 481 . . . . . . . . 9  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  ->  H  e.  (Subcat `  C
) )
249adantr 481 . . . . . . . . . 10  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  H  Fn  ( dom  dom  H  X.  dom  dom  H ) )
2524adantr 481 . . . . . . . . 9  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  ->  H  Fn  ( dom  dom 
H  X.  dom  dom  H ) )
26 eqid 2622 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
27 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  dom  dom  J  =  dom  dom  J )
2815, 27sscfn1 16477 . . . . . . . . . . 11  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  Fn  ( dom  dom  J  X.  dom  dom  J ) )
2928, 24, 15ssc1 16481 . . . . . . . . . 10  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  dom  dom  J  C_ 
dom  dom  H )
3029sselda 3603 . . . . . . . . 9  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  ->  x  e.  dom  dom  H
)
314, 23, 25, 26, 30subcid 16507 . . . . . . . 8  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  -> 
( ( Id `  C ) `  x
)  =  ( ( Id `  D ) `
 x ) )
3231eleq1d 2686 . . . . . . 7  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  -> 
( ( ( Id
`  C ) `  x )  e.  ( x J x )  <-> 
( ( Id `  D ) `  x
)  e.  ( x J x ) ) )
3332ralbidva 2985 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( A. x  e.  dom  dom  J
( ( Id `  C ) `  x
)  e.  ( x J x )  <->  A. x  e.  dom  dom  J (
( Id `  D
) `  x )  e.  ( x J x ) ) )
344oveq1i 6660 . . . . . . . 8  |-  ( D  |`cat 
J )  =  ( ( C  |`cat  H )  |`cat  J )
356adantr 481 . . . . . . . . 9  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  C  e.  Cat )
36 dmexg 7097 . . . . . . . . . . 11  |-  ( H  e.  (Subcat `  C
)  ->  dom  H  e. 
_V )
37 dmexg 7097 . . . . . . . . . . 11  |-  ( dom 
H  e.  _V  ->  dom 
dom  H  e.  _V )
3836, 37syl 17 . . . . . . . . . 10  |-  ( H  e.  (Subcat `  C
)  ->  dom  dom  H  e.  _V )
3938adantr 481 . . . . . . . . 9  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  dom  dom  H  e.  _V )
4035, 24, 28, 39, 29rescabs 16493 . . . . . . . 8  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( ( C  |`cat  H )  |`cat  J )  =  ( C  |`cat  J
) )
4134, 40syl5req 2669 . . . . . . 7  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( C  |`cat  J )  =  ( D  |`cat 
J ) )
4241eleq1d 2686 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( ( C  |`cat  J )  e.  Cat  <->  ( D  |`cat  J )  e.  Cat ) )
4322, 33, 423anbi123d 1399 . . . . 5  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( ( J  C_cat  ( Hom f  `  C )  /\  A. x  e.  dom  dom  J ( ( Id `  C ) `  x
)  e.  ( x J x )  /\  ( C  |`cat  J )  e.  Cat ) 
<->  ( J  C_cat  ( Hom f  `  D )  /\  A. x  e.  dom  dom  J
( ( Id `  D ) `  x
)  e.  ( x J x )  /\  ( D  |`cat  J )  e.  Cat ) ) )
44 eqid 2622 . . . . . 6  |-  ( C  |`cat 
J )  =  ( C  |`cat  J )
4517, 26, 44, 35, 28issubc3 16509 . . . . 5  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  ( Hom f  `  C )  /\  A. x  e.  dom  dom  J ( ( Id `  C ) `  x
)  e.  ( x J x )  /\  ( C  |`cat  J )  e.  Cat ) ) )
46 eqid 2622 . . . . . 6  |-  ( Id
`  D )  =  ( Id `  D
)
47 eqid 2622 . . . . . 6  |-  ( D  |`cat 
J )  =  ( D  |`cat  J )
484, 7subccat 16508 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  D  e.  Cat )
4948adantr 481 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  D  e.  Cat )
502, 46, 47, 49, 28issubc3 16509 . . . . 5  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  e.  (Subcat `  D )  <->  ( J  C_cat  ( Hom f  `  D )  /\  A. x  e.  dom  dom  J ( ( Id `  D ) `  x
)  e.  ( x J x )  /\  ( D  |`cat  J )  e.  Cat ) ) )
5143, 45, 503bitr4rd 301 . . . 4  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  e.  (Subcat `  D )  <->  J  e.  (Subcat `  C
) ) )
5251pm5.32da 673 . . 3  |-  ( H  e.  (Subcat `  C
)  ->  ( ( J  C_cat  H  /\  J  e.  (Subcat `  D )
)  <->  ( J  C_cat  H  /\  J  e.  (Subcat `  C ) ) ) )
5314, 52bitrd 268 . 2  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  C_cat  H  /\  J  e.  (Subcat `  C )
) ) )
54 ancom 466 . 2  |-  ( ( J  C_cat  H  /\  J  e.  (Subcat `  C )
)  <->  ( J  e.  (Subcat `  C )  /\  J  C_cat  H )
)
5553, 54syl6bb 276 1  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  e.  (Subcat `  C )  /\  J  C_cat  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653    X. cxp 5112   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325   Idccid 16326   Hom f chomf 16327    C_cat cssc 16467    |`cat cresc 16468  Subcatcsubc 16469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472
This theorem is referenced by:  fldhmsubc  42084  fldhmsubcALTV  42102
  Copyright terms: Public domain W3C validator