MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin3ds Structured version   Visualization version   Unicode version

Theorem ssfin3ds 9152
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypothesis
Ref Expression
isfin3ds.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
ssfin3ds  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  e.  F )
Distinct variable groups:    a, b,
g, A    B, a,
b, g
Allowed substitution hints:    F( g, a, b)

Proof of Theorem ssfin3ds
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . . 5  |-  ( A  e.  F  ->  ~P A  e.  _V )
21adantr 481 . . . 4  |-  ( ( A  e.  F  /\  B  C_  A )  ->  ~P A  e.  _V )
3 simpr 477 . . . . 5  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  C_  A )
4 sspwb 4917 . . . . 5  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
53, 4sylib 208 . . . 4  |-  ( ( A  e.  F  /\  B  C_  A )  ->  ~P B  C_  ~P A
)
6 mapss 7900 . . . 4  |-  ( ( ~P A  e.  _V  /\ 
~P B  C_  ~P A )  ->  ( ~P B  ^m  om )  C_  ( ~P A  ^m  om ) )
72, 5, 6syl2anc 693 . . 3  |-  ( ( A  e.  F  /\  B  C_  A )  -> 
( ~P B  ^m  om )  C_  ( ~P A  ^m  om ) )
8 isfin3ds.f . . . . . 6  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a ) }
98isfin3ds 9151 . . . . 5  |-  ( A  e.  F  ->  ( A  e.  F  <->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
109ibi 256 . . . 4  |-  ( A  e.  F  ->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
1110adantr 481 . . 3  |-  ( ( A  e.  F  /\  B  C_  A )  ->  A. f  e.  ( ~P A  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
12 ssralv 3666 . . 3  |-  ( ( ~P B  ^m  om )  C_  ( ~P A  ^m  om )  ->  ( A. f  e.  ( ~P A  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f )  ->  A. f  e.  ( ~P B  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
137, 11, 12sylc 65 . 2  |-  ( ( A  e.  F  /\  B  C_  A )  ->  A. f  e.  ( ~P B  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
14 ssexg 4804 . . . 4  |-  ( ( B  C_  A  /\  A  e.  F )  ->  B  e.  _V )
1514ancoms 469 . . 3  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  e.  _V )
168isfin3ds 9151 . . 3  |-  ( B  e.  _V  ->  ( B  e.  F  <->  A. f  e.  ( ~P B  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
1715, 16syl 17 . 2  |-  ( ( A  e.  F  /\  B  C_  A )  -> 
( B  e.  F  <->  A. f  e.  ( ~P B  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
1813, 17mpbird 247 1  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   |^|cint 4475   ran crn 5115   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  fin23lem31  9165
  Copyright terms: Public domain W3C validator