MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem12 Structured version   Visualization version   Unicode version

Theorem fin23lem12 9153
Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of  U and its intersection. First, the value of  U at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)

Hypothesis
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
Assertion
Ref Expression
fin23lem12  |-  ( A  e.  om  ->  ( U `  suc  A )  =  if ( ( ( t `  A
)  i^i  ( U `  A ) )  =  (/) ,  ( U `  A ) ,  ( ( t `  A
)  i^i  ( U `  A ) ) ) )
Distinct variable groups:    t, i, u    A, i, u    U, i, u
Allowed substitution hints:    A( t)    U( t)

Proof of Theorem fin23lem12
StepHypRef Expression
1 fin23lem.a . . 3  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
21seqomsuc 7552 . 2  |-  ( A  e.  om  ->  ( U `  suc  A )  =  ( A ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `  i )  i^i  u
)  =  (/) ,  u ,  ( ( t `
 i )  i^i  u ) ) ) ( U `  A
) ) )
3 fvex 6201 . . 3  |-  ( U `
 A )  e. 
_V
4 fveq2 6191 . . . . . . 7  |-  ( i  =  A  ->  (
t `  i )  =  ( t `  A ) )
54ineq1d 3813 . . . . . 6  |-  ( i  =  A  ->  (
( t `  i
)  i^i  u )  =  ( ( t `
 A )  i^i  u ) )
65eqeq1d 2624 . . . . 5  |-  ( i  =  A  ->  (
( ( t `  i )  i^i  u
)  =  (/)  <->  ( (
t `  A )  i^i  u )  =  (/) ) )
76, 5ifbieq2d 4111 . . . 4  |-  ( i  =  A  ->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) )  =  if ( ( ( t `  A
)  i^i  u )  =  (/) ,  u ,  ( ( t `  A )  i^i  u
) ) )
8 ineq2 3808 . . . . . 6  |-  ( u  =  ( U `  A )  ->  (
( t `  A
)  i^i  u )  =  ( ( t `
 A )  i^i  ( U `  A
) ) )
98eqeq1d 2624 . . . . 5  |-  ( u  =  ( U `  A )  ->  (
( ( t `  A )  i^i  u
)  =  (/)  <->  ( (
t `  A )  i^i  ( U `  A
) )  =  (/) ) )
10 id 22 . . . . 5  |-  ( u  =  ( U `  A )  ->  u  =  ( U `  A ) )
119, 10, 8ifbieq12d 4113 . . . 4  |-  ( u  =  ( U `  A )  ->  if ( ( ( t `
 A )  i^i  u )  =  (/) ,  u ,  ( ( t `  A )  i^i  u ) )  =  if ( ( ( t `  A
)  i^i  ( U `  A ) )  =  (/) ,  ( U `  A ) ,  ( ( t `  A
)  i^i  ( U `  A ) ) ) )
12 eqid 2622 . . . 4  |-  ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `  i
)  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u
) ) )  =  ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) )
133inex2 4800 . . . . 5  |-  ( ( t `  A )  i^i  ( U `  A ) )  e. 
_V
143, 13ifex 4156 . . . 4  |-  if ( ( ( t `  A )  i^i  ( U `  A )
)  =  (/) ,  ( U `  A ) ,  ( ( t `
 A )  i^i  ( U `  A
) ) )  e. 
_V
157, 11, 12, 14ovmpt2 6796 . . 3  |-  ( ( A  e.  om  /\  ( U `  A )  e.  _V )  -> 
( A ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `  i
)  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u
) ) ) ( U `  A ) )  =  if ( ( ( t `  A )  i^i  ( U `  A )
)  =  (/) ,  ( U `  A ) ,  ( ( t `
 A )  i^i  ( U `  A
) ) ) )
163, 15mpan2 707 . 2  |-  ( A  e.  om  ->  ( A ( i  e. 
om ,  u  e. 
_V  |->  if ( ( ( t `  i
)  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u
) ) ) ( U `  A ) )  =  if ( ( ( t `  A )  i^i  ( U `  A )
)  =  (/) ,  ( U `  A ) ,  ( ( t `
 A )  i^i  ( U `  A
) ) ) )
172, 16eqtrd 2656 1  |-  ( A  e.  om  ->  ( U `  suc  A )  =  if ( ( ( t `  A
)  i^i  ( U `  A ) )  =  (/) ,  ( U `  A ) ,  ( ( t `  A
)  i^i  ( U `  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ifcif 4086   U.cuni 4436   ran crn 5115   suc csuc 5725   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543
This theorem is referenced by:  fin23lem13  9154  fin23lem14  9155  fin23lem19  9158
  Copyright terms: Public domain W3C validator