| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issrngd | Structured version Visualization version Unicode version | ||
| Description: Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| issrngd.k |
|
| issrngd.p |
|
| issrngd.t |
|
| issrngd.c |
|
| issrngd.r |
|
| issrngd.cl |
|
| issrngd.dp |
|
| issrngd.dt |
|
| issrngd.id |
|
| Ref | Expression |
|---|---|
| issrngd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | eqid 2622 |
. . . 4
| |
| 4 | 3, 2 | oppr1 18634 |
. . 3
|
| 5 | eqid 2622 |
. . 3
| |
| 6 | eqid 2622 |
. . 3
| |
| 7 | issrngd.r |
. . 3
| |
| 8 | 3 | opprring 18631 |
. . . 4
|
| 9 | 7, 8 | syl 17 |
. . 3
|
| 10 | 1, 2 | ringidcl 18568 |
. . . . . . . . 9
|
| 11 | 7, 10 | syl 17 |
. . . . . . . 8
|
| 12 | issrngd.id |
. . . . . . . . . . . . 13
| |
| 13 | 12 | ex 450 |
. . . . . . . . . . . 12
|
| 14 | issrngd.k |
. . . . . . . . . . . . 13
| |
| 15 | 14 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 16 | issrngd.c |
. . . . . . . . . . . . . 14
| |
| 17 | 16 | fveq1d 6193 |
. . . . . . . . . . . . . 14
|
| 18 | 16, 17 | fveq12d 6197 |
. . . . . . . . . . . . 13
|
| 19 | 18 | eqeq1d 2624 |
. . . . . . . . . . . 12
|
| 20 | 13, 15, 19 | 3imtr3d 282 |
. . . . . . . . . . 11
|
| 21 | 20 | imp 445 |
. . . . . . . . . 10
|
| 22 | 21 | eqcomd 2628 |
. . . . . . . . 9
|
| 23 | 22 | ralrimiva 2966 |
. . . . . . . 8
|
| 24 | id 22 |
. . . . . . . . . 10
| |
| 25 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 26 | 25 | fveq2d 6195 |
. . . . . . . . . 10
|
| 27 | 24, 26 | eqeq12d 2637 |
. . . . . . . . 9
|
| 28 | 27 | rspcv 3305 |
. . . . . . . 8
|
| 29 | 11, 23, 28 | sylc 65 |
. . . . . . 7
|
| 30 | 29 | oveq1d 6665 |
. . . . . 6
|
| 31 | issrngd.cl |
. . . . . . . . . . 11
| |
| 32 | 31 | ex 450 |
. . . . . . . . . 10
|
| 33 | 17, 14 | eleq12d 2695 |
. . . . . . . . . 10
|
| 34 | 32, 15, 33 | 3imtr3d 282 |
. . . . . . . . 9
|
| 35 | 34 | ralrimiv 2965 |
. . . . . . . 8
|
| 36 | 25 | eleq1d 2686 |
. . . . . . . . 9
|
| 37 | 36 | rspcv 3305 |
. . . . . . . 8
|
| 38 | 11, 35, 37 | sylc 65 |
. . . . . . 7
|
| 39 | issrngd.dt |
. . . . . . . . . 10
| |
| 40 | 39 | 3expib 1268 |
. . . . . . . . 9
|
| 41 | 14 | eleq2d 2687 |
. . . . . . . . . 10
|
| 42 | 15, 41 | anbi12d 747 |
. . . . . . . . 9
|
| 43 | issrngd.t |
. . . . . . . . . . . 12
| |
| 44 | 43 | oveqd 6667 |
. . . . . . . . . . 11
|
| 45 | 16, 44 | fveq12d 6197 |
. . . . . . . . . 10
|
| 46 | 16 | fveq1d 6193 |
. . . . . . . . . . 11
|
| 47 | 43, 46, 17 | oveq123d 6671 |
. . . . . . . . . 10
|
| 48 | 45, 47 | eqeq12d 2637 |
. . . . . . . . 9
|
| 49 | 40, 42, 48 | 3imtr3d 282 |
. . . . . . . 8
|
| 50 | 49 | ralrimivv 2970 |
. . . . . . 7
|
| 51 | oveq1 6657 |
. . . . . . . . . 10
| |
| 52 | 51 | fveq2d 6195 |
. . . . . . . . 9
|
| 53 | 25 | oveq2d 6666 |
. . . . . . . . 9
|
| 54 | 52, 53 | eqeq12d 2637 |
. . . . . . . 8
|
| 55 | oveq2 6658 |
. . . . . . . . . 10
| |
| 56 | 55 | fveq2d 6195 |
. . . . . . . . 9
|
| 57 | fveq2 6191 |
. . . . . . . . . 10
| |
| 58 | 57 | oveq1d 6665 |
. . . . . . . . 9
|
| 59 | 56, 58 | eqeq12d 2637 |
. . . . . . . 8
|
| 60 | 54, 59 | rspc2va 3323 |
. . . . . . 7
|
| 61 | 11, 38, 50, 60 | syl21anc 1325 |
. . . . . 6
|
| 62 | 30, 61 | eqtr4d 2659 |
. . . . 5
|
| 63 | 1, 5, 2 | ringlidm 18571 |
. . . . . 6
|
| 64 | 7, 38, 63 | syl2anc 693 |
. . . . 5
|
| 65 | 64 | fveq2d 6195 |
. . . . 5
|
| 66 | 62, 64, 65 | 3eqtr3d 2664 |
. . . 4
|
| 67 | eqid 2622 |
. . . . . 6
| |
| 68 | eqid 2622 |
. . . . . 6
| |
| 69 | 1, 67, 68 | stafval 18848 |
. . . . 5
|
| 70 | 11, 69 | syl 17 |
. . . 4
|
| 71 | 66, 70, 29 | 3eqtr4d 2666 |
. . 3
|
| 72 | 49 | imp 445 |
. . . . 5
|
| 73 | 1, 5, 3, 6 | opprmul 18626 |
. . . . 5
|
| 74 | 72, 73 | syl6eqr 2674 |
. . . 4
|
| 75 | 1, 5 | ringcl 18561 |
. . . . . . 7
|
| 76 | 75 | 3expb 1266 |
. . . . . 6
|
| 77 | 7, 76 | sylan 488 |
. . . . 5
|
| 78 | 1, 67, 68 | stafval 18848 |
. . . . 5
|
| 79 | 77, 78 | syl 17 |
. . . 4
|
| 80 | 1, 67, 68 | stafval 18848 |
. . . . . 6
|
| 81 | 1, 67, 68 | stafval 18848 |
. . . . . 6
|
| 82 | 80, 81 | oveqan12d 6669 |
. . . . 5
|
| 83 | 82 | adantl 482 |
. . . 4
|
| 84 | 74, 79, 83 | 3eqtr4d 2666 |
. . 3
|
| 85 | 3, 1 | opprbas 18629 |
. . 3
|
| 86 | eqid 2622 |
. . 3
| |
| 87 | 3, 86 | oppradd 18630 |
. . 3
|
| 88 | 34 | imp 445 |
. . . 4
|
| 89 | 1, 67, 68 | staffval 18847 |
. . . 4
|
| 90 | 88, 89 | fmptd 6385 |
. . 3
|
| 91 | issrngd.dp |
. . . . . . 7
| |
| 92 | 91 | 3expib 1268 |
. . . . . 6
|
| 93 | issrngd.p |
. . . . . . . . 9
| |
| 94 | 93 | oveqd 6667 |
. . . . . . . 8
|
| 95 | 16, 94 | fveq12d 6197 |
. . . . . . 7
|
| 96 | 93, 17, 46 | oveq123d 6671 |
. . . . . . 7
|
| 97 | 95, 96 | eqeq12d 2637 |
. . . . . 6
|
| 98 | 92, 42, 97 | 3imtr3d 282 |
. . . . 5
|
| 99 | 98 | imp 445 |
. . . 4
|
| 100 | 1, 86 | ringacl 18578 |
. . . . . . 7
|
| 101 | 100 | 3expb 1266 |
. . . . . 6
|
| 102 | 7, 101 | sylan 488 |
. . . . 5
|
| 103 | 1, 67, 68 | stafval 18848 |
. . . . 5
|
| 104 | 102, 103 | syl 17 |
. . . 4
|
| 105 | 80, 81 | oveqan12d 6669 |
. . . . 5
|
| 106 | 105 | adantl 482 |
. . . 4
|
| 107 | 99, 104, 106 | 3eqtr4d 2666 |
. . 3
|
| 108 | 1, 2, 4, 5, 6, 7, 9, 71, 84, 85, 86, 87, 90, 107 | isrhmd 18729 |
. 2
|
| 109 | 1, 67, 68 | staffval 18847 |
. . . . . . . 8
|
| 110 | 109 | fmpt 6381 |
. . . . . . 7
|
| 111 | 90, 110 | sylibr 224 |
. . . . . 6
|
| 112 | 111 | r19.21bi 2932 |
. . . . 5
|
| 113 | id 22 |
. . . . . . . . . . 11
| |
| 114 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 115 | 114 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 116 | 113, 115 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 117 | 116 | rspccva 3308 |
. . . . . . . . 9
|
| 118 | 23, 117 | sylan 488 |
. . . . . . . 8
|
| 119 | 118 | adantrl 752 |
. . . . . . 7
|
| 120 | fveq2 6191 |
. . . . . . . 8
| |
| 121 | 120 | eqeq2d 2632 |
. . . . . . 7
|
| 122 | 119, 121 | syl5ibrcom 237 |
. . . . . 6
|
| 123 | 22 | adantrr 753 |
. . . . . . 7
|
| 124 | fveq2 6191 |
. . . . . . . 8
| |
| 125 | 124 | eqeq2d 2632 |
. . . . . . 7
|
| 126 | 123, 125 | syl5ibrcom 237 |
. . . . . 6
|
| 127 | 122, 126 | impbid 202 |
. . . . 5
|
| 128 | 89, 88, 112, 127 | f1ocnv2d 6886 |
. . . 4
|
| 129 | 128 | simprd 479 |
. . 3
|
| 130 | 129, 109 | syl6reqr 2675 |
. 2
|
| 131 | 3, 68 | issrng 18850 |
. 2
|
| 132 | 108, 130, 131 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-ghm 17658 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-rnghom 18715 df-staf 18845 df-srng 18846 |
| This theorem is referenced by: idsrngd 18862 cnsrng 19780 hlhilsrnglem 37245 |
| Copyright terms: Public domain | W3C validator |