MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecgrtg Structured version   Visualization version   Unicode version

Theorem ecgrtg 25863
Description: The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ecgrtg.1  |-  ( ph  ->  N  e.  NN )
ecgrtg.2  |-  P  =  ( Base `  (EEG `  N ) )
ecgrtg.3  |-  .-  =  ( dist `  (EEG `  N
) )
ecgrtg.a  |-  ( ph  ->  A  e.  P )
ecgrtg.b  |-  ( ph  ->  B  e.  P )
ecgrtg.c  |-  ( ph  ->  C  e.  P )
ecgrtg.d  |-  ( ph  ->  D  e.  P )
Assertion
Ref Expression
ecgrtg  |-  ( ph  ->  ( <. A ,  B >.Cgr
<. C ,  D >.  <->  ( A  .-  B )  =  ( C  .-  D
) ) )

Proof of Theorem ecgrtg
Dummy variables  x  i  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecgrtg.a . . . 4  |-  ( ph  ->  A  e.  P )
2 ecgrtg.1 . . . . . 6  |-  ( ph  ->  N  e.  NN )
3 eengbas 25861 . . . . . 6  |-  ( N  e.  NN  ->  ( EE `  N )  =  ( Base `  (EEG `  N ) ) )
42, 3syl 17 . . . . 5  |-  ( ph  ->  ( EE `  N
)  =  ( Base `  (EEG `  N )
) )
5 ecgrtg.2 . . . . 5  |-  P  =  ( Base `  (EEG `  N ) )
64, 5syl6eqr 2674 . . . 4  |-  ( ph  ->  ( EE `  N
)  =  P )
71, 6eleqtrrd 2704 . . 3  |-  ( ph  ->  A  e.  ( EE
`  N ) )
8 ecgrtg.b . . . 4  |-  ( ph  ->  B  e.  P )
98, 6eleqtrrd 2704 . . 3  |-  ( ph  ->  B  e.  ( EE
`  N ) )
10 ecgrtg.c . . . 4  |-  ( ph  ->  C  e.  P )
1110, 6eleqtrrd 2704 . . 3  |-  ( ph  ->  C  e.  ( EE
`  N ) )
12 ecgrtg.d . . . 4  |-  ( ph  ->  D  e.  P )
1312, 6eleqtrrd 2704 . . 3  |-  ( ph  ->  D  e.  ( EE
`  N ) )
14 brcgr 25780 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
157, 9, 11, 13, 14syl22anc 1327 . 2  |-  ( ph  ->  ( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
16 dsid 16063 . . . . . . 7  |-  dist  = Slot  ( dist `  ndx )
17 fvexd 6203 . . . . . . 7  |-  ( ph  ->  (EEG `  N )  e.  _V )
18 eengstr 25860 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (EEG `  N ) Struct  <. 1 , ; 1 7 >. )
192, 18syl 17 . . . . . . . . 9  |-  ( ph  ->  (EEG `  N ) Struct  <.
1 , ; 1 7 >. )
20 isstruct 15870 . . . . . . . . . 10  |-  ( (EEG
`  N ) Struct  <. 1 , ; 1 7 >.  <->  ( (
1  e.  NN  /\ ; 1 7  e.  NN  /\  1  <_ ; 1
7 )  /\  Fun  ( (EEG `  N )  \  { (/) } )  /\  dom  (EEG `  N )  C_  ( 1 ...; 1 7 ) ) )
2120simp2bi 1077 . . . . . . . . 9  |-  ( (EEG
`  N ) Struct  <. 1 , ; 1 7 >.  ->  Fun  ( (EEG `  N )  \  { (/) } ) )
2219, 21syl 17 . . . . . . . 8  |-  ( ph  ->  Fun  ( (EEG `  N )  \  { (/)
} ) )
23 structcnvcnv 15871 . . . . . . . . . 10  |-  ( (EEG
`  N ) Struct  <. 1 , ; 1 7 >.  ->  `' `' (EEG `  N )  =  ( (EEG `  N )  \  { (/)
} ) )
2419, 23syl 17 . . . . . . . . 9  |-  ( ph  ->  `' `' (EEG `  N )  =  ( (EEG `  N )  \  { (/)
} ) )
2524funeqd 5910 . . . . . . . 8  |-  ( ph  ->  ( Fun  `' `' (EEG `  N )  <->  Fun  ( (EEG
`  N )  \  { (/) } ) ) )
2622, 25mpbird 247 . . . . . . 7  |-  ( ph  ->  Fun  `' `' (EEG
`  N ) )
27 opex 4932 . . . . . . . . . 10  |-  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  e.  _V
2827prid2 4298 . . . . . . . . 9  |-  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  e.  { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }
29 elun1 3780 . . . . . . . . 9  |-  ( <.
( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  e.  { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  ->  <.
( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  e.  ( { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
3028, 29ax-mp 5 . . . . . . . 8  |-  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  e.  ( { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } )
31 eengv 25859 . . . . . . . . 9  |-  ( N  e.  NN  ->  (EEG `  N )  =  ( { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
322, 31syl 17 . . . . . . . 8  |-  ( ph  ->  (EEG `  N )  =  ( { <. (
Base `  ndx ) ,  ( EE `  N
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
3330, 32syl5eleqr 2708 . . . . . . 7  |-  ( ph  -> 
<. ( dist `  ndx ) ,  ( x  e.  ( EE `  N
) ,  y  e.  ( EE `  N
)  |->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  e.  (EEG
`  N ) )
34 fvex 6201 . . . . . . . . 9  |-  ( EE
`  N )  e. 
_V
3534, 34mpt2ex 7247 . . . . . . . 8  |-  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N )  |->  sum_ i  e.  ( 1 ... N
) ( ( ( x `  i )  -  ( y `  i ) ) ^
2 ) )  e. 
_V
3635a1i 11 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) )  e.  _V )
3716, 17, 26, 33, 36strfv2d 15905 . . . . . 6  |-  ( ph  ->  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) )  =  (
dist `  (EEG `  N
) ) )
38 ecgrtg.3 . . . . . 6  |-  .-  =  ( dist `  (EEG `  N
) )
3937, 38syl6reqr 2675 . . . . 5  |-  ( ph  ->  .-  =  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N )  |->  sum_ i  e.  ( 1 ... N
) ( ( ( x `  i )  -  ( y `  i ) ) ^
2 ) ) )
40 simplrl 800 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  A  /\  y  =  B )
)  /\  i  e.  ( 1 ... N
) )  ->  x  =  A )
4140fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  A  /\  y  =  B )
)  /\  i  e.  ( 1 ... N
) )  ->  (
x `  i )  =  ( A `  i ) )
42 simplrr 801 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  A  /\  y  =  B )
)  /\  i  e.  ( 1 ... N
) )  ->  y  =  B )
4342fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  A  /\  y  =  B )
)  /\  i  e.  ( 1 ... N
) )  ->  (
y `  i )  =  ( B `  i ) )
4441, 43oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  A  /\  y  =  B )
)  /\  i  e.  ( 1 ... N
) )  ->  (
( x `  i
)  -  ( y `
 i ) )  =  ( ( A `
 i )  -  ( B `  i ) ) )
4544oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  A  /\  y  =  B )
)  /\  i  e.  ( 1 ... N
) )  ->  (
( ( x `  i )  -  (
y `  i )
) ^ 2 )  =  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )
4645sumeq2dv 14433 . . . . 5  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( x `  i )  -  (
y `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
47 sumex 14418 . . . . . 6  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  e.  _V
4847a1i 11 . . . . 5  |-  ( ph  -> 
sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  e.  _V )
4939, 46, 7, 9, 48ovmpt2d 6788 . . . 4  |-  ( ph  ->  ( A  .-  B
)  =  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )
5049eqcomd 2628 . . 3  |-  ( ph  -> 
sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  ( A  .-  B ) )
51 simplrl 800 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  C  /\  y  =  D )
)  /\  i  e.  ( 1 ... N
) )  ->  x  =  C )
5251fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  C  /\  y  =  D )
)  /\  i  e.  ( 1 ... N
) )  ->  (
x `  i )  =  ( C `  i ) )
53 simplrr 801 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  C  /\  y  =  D )
)  /\  i  e.  ( 1 ... N
) )  ->  y  =  D )
5453fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  C  /\  y  =  D )
)  /\  i  e.  ( 1 ... N
) )  ->  (
y `  i )  =  ( D `  i ) )
5552, 54oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  C  /\  y  =  D )
)  /\  i  e.  ( 1 ... N
) )  ->  (
( x `  i
)  -  ( y `
 i ) )  =  ( ( C `
 i )  -  ( D `  i ) ) )
5655oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  C  /\  y  =  D )
)  /\  i  e.  ( 1 ... N
) )  ->  (
( ( x `  i )  -  (
y `  i )
) ^ 2 )  =  ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
5756sumeq2dv 14433 . . . . 5  |-  ( (
ph  /\  ( x  =  C  /\  y  =  D ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( x `  i )  -  (
y `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
58 sumex 14418 . . . . . 6  |-  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  e.  _V
5958a1i 11 . . . . 5  |-  ( ph  -> 
sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  e.  _V )
6039, 57, 11, 13, 59ovmpt2d 6788 . . . 4  |-  ( ph  ->  ( C  .-  D
)  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
6160eqcomd 2628 . . 3  |-  ( ph  -> 
sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  =  ( C  .-  D ) )
6250, 61eqeq12d 2637 . 2  |-  ( ph  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  <-> 
( A  .-  B
)  =  ( C 
.-  D ) ) )
6315, 62bitrd 268 1  |-  ( ph  ->  ( <. A ,  B >.Cgr
<. C ,  D >.  <->  ( A  .-  B )  =  ( C  .-  D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1c1 9937    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   7c7 11075  ;cdc 11493   ...cfz 12326   ^cexp 12860   sum_csu 14416   Struct cstr 15853   ndxcnx 15854   Basecbs 15857   distcds 15950  Itvcitv 25335  LineGclng 25336   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770  EEGceeng 25857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-ds 15964  df-itv 25337  df-lng 25338  df-ee 25771  df-cgr 25773  df-eeng 25858
This theorem is referenced by:  eengtrkg  25865
  Copyright terms: Public domain W3C validator