MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop3 Structured version   Visualization version   Unicode version

Theorem subgrprop3 26168
Description: The properties of a subgraph: If  S is a subgraph of  G, its vertices are also vertices of  G, and its edges are also edges of  G. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
subgrprop3.v  |-  V  =  (Vtx `  S )
subgrprop3.a  |-  A  =  (Vtx `  G )
subgrprop3.e  |-  E  =  (Edg `  S )
subgrprop3.b  |-  B  =  (Edg `  G )
Assertion
Ref Expression
subgrprop3  |-  ( S SubGraph  G  ->  ( V  C_  A  /\  E  C_  B
) )

Proof of Theorem subgrprop3
StepHypRef Expression
1 subgrprop3.v . . . 4  |-  V  =  (Vtx `  S )
2 subgrprop3.a . . . 4  |-  A  =  (Vtx `  G )
3 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
4 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
5 subgrprop3.e . . . 4  |-  E  =  (Edg `  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( V  C_  A  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  E  C_  ~P V ) )
7 3simpa 1058 . . 3  |-  ( ( V  C_  A  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  E  C_  ~P V )  ->  ( V  C_  A  /\  (iEdg `  S
)  C_  (iEdg `  G
) ) )
86, 7syl 17 . 2  |-  ( S SubGraph  G  ->  ( V  C_  A  /\  (iEdg `  S
)  C_  (iEdg `  G
) ) )
9 simprl 794 . . 3  |-  ( ( S SubGraph  G  /\  ( V  C_  A  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )  ->  V  C_  A
)
10 rnss 5354 . . . . 5  |-  ( (iEdg `  S )  C_  (iEdg `  G )  ->  ran  (iEdg `  S )  C_  ran  (iEdg `  G )
)
1110ad2antll 765 . . . 4  |-  ( ( S SubGraph  G  /\  ( V  C_  A  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )  ->  ran  (iEdg `  S
)  C_  ran  (iEdg `  G ) )
12 subgrv 26162 . . . . . 6  |-  ( S SubGraph  G  ->  ( S  e. 
_V  /\  G  e.  _V ) )
13 edgval 25941 . . . . . . . . 9  |-  (Edg `  S )  =  ran  (iEdg `  S )
1413a1i 11 . . . . . . . 8  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  (Edg `  S )  =  ran  (iEdg `  S
) )
155, 14syl5eq 2668 . . . . . . 7  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  E  =  ran  (iEdg `  S ) )
16 subgrprop3.b . . . . . . . 8  |-  B  =  (Edg `  G )
17 edgval 25941 . . . . . . . . 9  |-  (Edg `  G )  =  ran  (iEdg `  G )
1817a1i 11 . . . . . . . 8  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  (Edg `  G )  =  ran  (iEdg `  G
) )
1916, 18syl5eq 2668 . . . . . . 7  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  B  =  ran  (iEdg `  G ) )
2015, 19sseq12d 3634 . . . . . 6  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  ( E  C_  B  <->  ran  (iEdg `  S )  C_ 
ran  (iEdg `  G )
) )
2112, 20syl 17 . . . . 5  |-  ( S SubGraph  G  ->  ( E  C_  B 
<->  ran  (iEdg `  S
)  C_  ran  (iEdg `  G ) ) )
2221adantr 481 . . . 4  |-  ( ( S SubGraph  G  /\  ( V  C_  A  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )  ->  ( E  C_  B 
<->  ran  (iEdg `  S
)  C_  ran  (iEdg `  G ) ) )
2311, 22mpbird 247 . . 3  |-  ( ( S SubGraph  G  /\  ( V  C_  A  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )  ->  E  C_  B
)
249, 23jca 554 . 2  |-  ( ( S SubGraph  G  /\  ( V  C_  A  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )  ->  ( V  C_  A  /\  E  C_  B
) )
258, 24mpdan 702 1  |-  ( S SubGraph  G  ->  ( V  C_  A  /\  E  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   ran crn 5115   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-edg 25940  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator