MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrissubgr Structured version   Visualization version   Unicode version

Theorem uhgrissubgr 26167
Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrissubgr.v  |-  V  =  (Vtx `  S )
uhgrissubgr.a  |-  A  =  (Vtx `  G )
uhgrissubgr.i  |-  I  =  (iEdg `  S )
uhgrissubgr.b  |-  B  =  (iEdg `  G )
Assertion
Ref Expression
uhgrissubgr  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  C_  B ) ) )

Proof of Theorem uhgrissubgr
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 uhgrissubgr.v . . . 4  |-  V  =  (Vtx `  S )
2 uhgrissubgr.a . . . 4  |-  A  =  (Vtx `  G )
3 uhgrissubgr.i . . . 4  |-  I  =  (iEdg `  S )
4 uhgrissubgr.b . . . 4  |-  B  =  (iEdg `  G )
5 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( V  C_  A  /\  I  C_  B  /\  (Edg `  S )  C_ 
~P V ) )
7 3simpa 1058 . . 3  |-  ( ( V  C_  A  /\  I  C_  B  /\  (Edg `  S )  C_  ~P V )  ->  ( V  C_  A  /\  I  C_  B ) )
86, 7syl 17 . 2  |-  ( S SubGraph  G  ->  ( V  C_  A  /\  I  C_  B
) )
9 simprl 794 . . . 4  |-  ( ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  /\  ( V 
C_  A  /\  I  C_  B ) )  ->  V  C_  A )
10 simp2 1062 . . . . . 6  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  Fun  B )
11 simpr 477 . . . . . 6  |-  ( ( V  C_  A  /\  I  C_  B )  ->  I  C_  B )
12 funssres 5930 . . . . . 6  |-  ( ( Fun  B  /\  I  C_  B )  ->  ( B  |`  dom  I )  =  I )
1310, 11, 12syl2an 494 . . . . 5  |-  ( ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  /\  ( V 
C_  A  /\  I  C_  B ) )  -> 
( B  |`  dom  I
)  =  I )
1413eqcomd 2628 . . . 4  |-  ( ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  /\  ( V 
C_  A  /\  I  C_  B ) )  ->  I  =  ( B  |` 
dom  I ) )
15 edguhgr 26024 . . . . . . . . 9  |-  ( ( S  e. UHGraph  /\  e  e.  (Edg `  S )
)  ->  e  e.  ~P (Vtx `  S )
)
1615ex 450 . . . . . . . 8  |-  ( S  e. UHGraph  ->  ( e  e.  (Edg `  S )  ->  e  e.  ~P (Vtx `  S ) ) )
171pweqi 4162 . . . . . . . . 9  |-  ~P V  =  ~P (Vtx `  S
)
1817eleq2i 2693 . . . . . . . 8  |-  ( e  e.  ~P V  <->  e  e.  ~P (Vtx `  S )
)
1916, 18syl6ibr 242 . . . . . . 7  |-  ( S  e. UHGraph  ->  ( e  e.  (Edg `  S )  ->  e  e.  ~P V
) )
2019ssrdv 3609 . . . . . 6  |-  ( S  e. UHGraph  ->  (Edg `  S
)  C_  ~P V
)
21203ad2ant3 1084 . . . . 5  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  (Edg `  S
)  C_  ~P V
)
2221adantr 481 . . . 4  |-  ( ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  /\  ( V 
C_  A  /\  I  C_  B ) )  -> 
(Edg `  S )  C_ 
~P V )
231, 2, 3, 4, 5issubgr 26163 . . . . . 6  |-  ( ( G  e.  W  /\  S  e. UHGraph  )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I )  /\  (Edg `  S
)  C_  ~P V
) ) )
24233adant2 1080 . . . . 5  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I
)  /\  (Edg `  S
)  C_  ~P V
) ) )
2524adantr 481 . . . 4  |-  ( ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  /\  ( V 
C_  A  /\  I  C_  B ) )  -> 
( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I
)  /\  (Edg `  S
)  C_  ~P V
) ) )
269, 14, 22, 25mpbir3and 1245 . . 3  |-  ( ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  /\  ( V 
C_  A  /\  I  C_  B ) )  ->  S SubGraph  G )
2726ex 450 . 2  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  ( ( V 
C_  A  /\  I  C_  B )  ->  S SubGraph  G ) )
288, 27impbid2 216 1  |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  C_  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by:  uhgrsubgrself  26172
  Copyright terms: Public domain W3C validator