MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  egrsubgr Structured version   Visualization version   Unicode version

Theorem egrsubgr 26169
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
Assertion
Ref Expression
egrsubgr  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  (Vtx `  S
)  C_  (Vtx `  G
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  S SubGraph  G )

Proof of Theorem egrsubgr
StepHypRef Expression
1 simp2 1062 . 2  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  (Vtx `  S
)  C_  (Vtx `  G
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  (Vtx `  S )  C_  (Vtx `  G ) )
2 eqid 2622 . . . . . . 7  |-  (iEdg `  S )  =  (iEdg `  S )
3 eqid 2622 . . . . . . 7  |-  (Edg `  S )  =  (Edg
`  S )
42, 3edg0iedg0 25949 . . . . . 6  |-  ( Fun  (iEdg `  S )  ->  ( (Edg `  S
)  =  (/)  <->  (iEdg `  S
)  =  (/) ) )
54adantl 482 . . . . 5  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  Fun  (iEdg `  S ) )  -> 
( (Edg `  S
)  =  (/)  <->  (iEdg `  S
)  =  (/) ) )
6 res0 5400 . . . . . . 7  |-  ( (iEdg `  G )  |`  (/) )  =  (/)
76eqcomi 2631 . . . . . 6  |-  (/)  =  ( (iEdg `  G )  |`  (/) )
8 id 22 . . . . . 6  |-  ( (iEdg `  S )  =  (/)  ->  (iEdg `  S )  =  (/) )
9 dmeq 5324 . . . . . . . 8  |-  ( (iEdg `  S )  =  (/)  ->  dom  (iEdg `  S
)  =  dom  (/) )
10 dm0 5339 . . . . . . . 8  |-  dom  (/)  =  (/)
119, 10syl6eq 2672 . . . . . . 7  |-  ( (iEdg `  S )  =  (/)  ->  dom  (iEdg `  S
)  =  (/) )
1211reseq2d 5396 . . . . . 6  |-  ( (iEdg `  S )  =  (/)  ->  ( (iEdg `  G
)  |`  dom  (iEdg `  S ) )  =  ( (iEdg `  G
)  |`  (/) ) )
137, 8, 123eqtr4a 2682 . . . . 5  |-  ( (iEdg `  S )  =  (/)  ->  (iEdg `  S )  =  ( (iEdg `  G )  |`  dom  (iEdg `  S ) ) )
145, 13syl6bi 243 . . . 4  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  Fun  (iEdg `  S ) )  -> 
( (Edg `  S
)  =  (/)  ->  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
) ) )
1514impr 649 . . 3  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
) )
16153adant2 1080 . 2  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  (Vtx `  S
)  C_  (Vtx `  G
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
) )
17 0ss 3972 . . . . 5  |-  (/)  C_  ~P (Vtx `  S )
18 sseq1 3626 . . . . 5  |-  ( (Edg
`  S )  =  (/)  ->  ( (Edg `  S )  C_  ~P (Vtx `  S )  <->  (/)  C_  ~P (Vtx `  S ) ) )
1917, 18mpbiri 248 . . . 4  |-  ( (Edg
`  S )  =  (/)  ->  (Edg `  S
)  C_  ~P (Vtx `  S ) )
2019adantl 482 . . 3  |-  ( ( Fun  (iEdg `  S
)  /\  (Edg `  S
)  =  (/) )  -> 
(Edg `  S )  C_ 
~P (Vtx `  S
) )
21203ad2ant3 1084 . 2  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  (Vtx `  S
)  C_  (Vtx `  G
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  (Edg `  S )  C_  ~P (Vtx `  S ) )
22 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
23 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
24 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
2522, 23, 2, 24, 3issubgr 26163 . . 3  |-  ( ( G  e.  W  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) ) ) )
26253ad2ant1 1082 . 2  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  (Vtx `  S
)  C_  (Vtx `  G
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  ( S SubGraph  G  <->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  =  ( (iEdg `  G )  |` 
dom  (iEdg `  S )
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) ) ) )
271, 16, 21, 26mpbir3and 1245 1  |-  ( ( ( G  e.  W  /\  S  e.  U
)  /\  (Vtx `  S
)  C_  (Vtx `  G
)  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  S SubGraph  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-edg 25940  df-subgr 26160
This theorem is referenced by:  0uhgrsubgr  26171
  Copyright terms: Public domain W3C validator