Proof of Theorem egrsubgr
Step | Hyp | Ref
| Expression |
1 | | simp2 1062 |
. 2
  

Vtx 
Vtx 
 iEdg  Edg    Vtx  Vtx    |
2 | | eqid 2622 |
. . . . . . 7
iEdg  iEdg   |
3 | | eqid 2622 |
. . . . . . 7
Edg  Edg   |
4 | 2, 3 | edg0iedg0 25949 |
. . . . . 6
 iEdg   Edg 
iEdg     |
5 | 4 | adantl 482 |
. . . . 5
  

iEdg    Edg 
iEdg     |
6 | | res0 5400 |
. . . . . . 7
 iEdg    |
7 | 6 | eqcomi 2631 |
. . . . . 6
 iEdg    |
8 | | id 22 |
. . . . . 6
 iEdg  iEdg    |
9 | | dmeq 5324 |
. . . . . . . 8
 iEdg  iEdg    |
10 | | dm0 5339 |
. . . . . . . 8
 |
11 | 9, 10 | syl6eq 2672 |
. . . . . . 7
 iEdg  iEdg    |
12 | 11 | reseq2d 5396 |
. . . . . 6
 iEdg   iEdg  iEdg    iEdg     |
13 | 7, 8, 12 | 3eqtr4a 2682 |
. . . . 5
 iEdg  iEdg   iEdg  iEdg     |
14 | 5, 13 | syl6bi 243 |
. . . 4
  

iEdg    Edg  iEdg   iEdg  iEdg      |
15 | 14 | impr 649 |
. . 3
  

 iEdg  Edg    iEdg   iEdg  iEdg     |
16 | 15 | 3adant2 1080 |
. 2
  

Vtx 
Vtx 
 iEdg  Edg    iEdg   iEdg  iEdg     |
17 | | 0ss 3972 |
. . . . 5
 Vtx   |
18 | | sseq1 3626 |
. . . . 5
 Edg   Edg   Vtx 
 Vtx     |
19 | 17, 18 | mpbiri 248 |
. . . 4
 Edg  Edg 
 Vtx    |
20 | 19 | adantl 482 |
. . 3
  iEdg 
Edg   Edg   Vtx    |
21 | 20 | 3ad2ant3 1084 |
. 2
  

Vtx 
Vtx 
 iEdg  Edg    Edg   Vtx    |
22 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
23 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
24 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
25 | 22, 23, 2, 24, 3 | issubgr 26163 |
. . 3
 
  SubGraph
 Vtx  Vtx  iEdg   iEdg  iEdg  
Edg 
 Vtx      |
26 | 25 | 3ad2ant1 1082 |
. 2
  

Vtx 
Vtx 
 iEdg  Edg     SubGraph  Vtx  Vtx  iEdg   iEdg  iEdg  
Edg 
 Vtx      |
27 | 1, 16, 21, 26 | mpbir3and 1245 |
1
  

Vtx 
Vtx 
 iEdg  Edg    SubGraph   |