MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppun Structured version   Visualization version   Unicode version

Theorem suppun 7315
Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019.)
Hypothesis
Ref Expression
suppun.g  |-  ( ph  ->  G  e.  V )
Assertion
Ref Expression
suppun  |-  ( ph  ->  ( F supp  Z ) 
C_  ( ( F  u.  G ) supp  Z
) )

Proof of Theorem suppun
StepHypRef Expression
1 ssun1 3776 . . . . . 6  |-  ( `' F " ( _V 
\  { Z }
) )  C_  (
( `' F "
( _V  \  { Z } ) )  u.  ( `' G "
( _V  \  { Z } ) ) )
2 cnvun 5538 . . . . . . . 8  |-  `' ( F  u.  G )  =  ( `' F  u.  `' G )
32imaeq1i 5463 . . . . . . 7  |-  ( `' ( F  u.  G
) " ( _V 
\  { Z }
) )  =  ( ( `' F  u.  `' G ) " ( _V  \  { Z }
) )
4 imaundir 5546 . . . . . . 7  |-  ( ( `' F  u.  `' G ) " ( _V  \  { Z }
) )  =  ( ( `' F "
( _V  \  { Z } ) )  u.  ( `' G "
( _V  \  { Z } ) ) )
53, 4eqtri 2644 . . . . . 6  |-  ( `' ( F  u.  G
) " ( _V 
\  { Z }
) )  =  ( ( `' F "
( _V  \  { Z } ) )  u.  ( `' G "
( _V  \  { Z } ) ) )
61, 5sseqtr4i 3638 . . . . 5  |-  ( `' F " ( _V 
\  { Z }
) )  C_  ( `' ( F  u.  G ) " ( _V  \  { Z }
) )
76a1i 11 . . . 4  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  ph )  ->  ( `' F " ( _V 
\  { Z }
) )  C_  ( `' ( F  u.  G ) " ( _V  \  { Z }
) ) )
8 suppimacnv 7306 . . . . 5  |-  ( ( F  e.  _V  /\  Z  e.  _V )  ->  ( F supp  Z )  =  ( `' F " ( _V  \  { Z } ) ) )
98adantr 481 . . . 4  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  ph )  ->  ( F supp  Z )  =  ( `' F " ( _V 
\  { Z }
) ) )
10 suppun.g . . . . . 6  |-  ( ph  ->  G  e.  V )
11 unexg 6959 . . . . . . 7  |-  ( ( F  e.  _V  /\  G  e.  V )  ->  ( F  u.  G
)  e.  _V )
1211adantlr 751 . . . . . 6  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  G  e.  V
)  ->  ( F  u.  G )  e.  _V )
1310, 12sylan2 491 . . . . 5  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  ph )  ->  ( F  u.  G )  e.  _V )
14 simplr 792 . . . . 5  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  ph )  ->  Z  e.  _V )
15 suppimacnv 7306 . . . . 5  |-  ( ( ( F  u.  G
)  e.  _V  /\  Z  e.  _V )  ->  ( ( F  u.  G ) supp  Z )  =  ( `' ( F  u.  G )
" ( _V  \  { Z } ) ) )
1613, 14, 15syl2anc 693 . . . 4  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  ph )  ->  (
( F  u.  G
) supp  Z )  =  ( `' ( F  u.  G ) " ( _V  \  { Z }
) ) )
177, 9, 163sstr4d 3648 . . 3  |-  ( ( ( F  e.  _V  /\  Z  e.  _V )  /\  ph )  ->  ( F supp  Z )  C_  (
( F  u.  G
) supp  Z ) )
1817ex 450 . 2  |-  ( ( F  e.  _V  /\  Z  e.  _V )  ->  ( ph  ->  ( F supp  Z )  C_  (
( F  u.  G
) supp  Z ) ) )
19 supp0prc 7298 . . . 4  |-  ( -.  ( F  e.  _V  /\  Z  e.  _V )  ->  ( F supp  Z )  =  (/) )
20 0ss 3972 . . . 4  |-  (/)  C_  (
( F  u.  G
) supp  Z )
2119, 20syl6eqss 3655 . . 3  |-  ( -.  ( F  e.  _V  /\  Z  e.  _V )  ->  ( F supp  Z ) 
C_  ( ( F  u.  G ) supp  Z
) )
2221a1d 25 . 2  |-  ( -.  ( F  e.  _V  /\  Z  e.  _V )  ->  ( ph  ->  ( F supp  Z )  C_  (
( F  u.  G
) supp  Z ) ) )
2318, 22pm2.61i 176 1  |-  ( ph  ->  ( F supp  Z ) 
C_  ( ( F  u.  G ) supp  Z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   `'ccnv 5113   "cima 5117  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  fsuppunbi  8296  gsumzaddlem  18321
  Copyright terms: Public domain W3C validator