MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Visualization version   Unicode version

Theorem ressuppss 7314
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( F  |`  B ) supp  Z )  C_  ( F supp  Z ) )

Proof of Theorem ressuppss
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . . . . . 9  |-  ( b  e.  ( B  i^i  dom 
F )  <->  ( b  e.  B  /\  b  e.  dom  F ) )
21simprbi 480 . . . . . . . 8  |-  ( b  e.  ( B  i^i  dom 
F )  ->  b  e.  dom  F )
3 dmres 5419 . . . . . . . 8  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
42, 3eleq2s 2719 . . . . . . 7  |-  ( b  e.  dom  ( F  |`  B )  ->  b  e.  dom  F )
54ad2antrl 764 . . . . . 6  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
b  e.  dom  F
)
6 snssi 4339 . . . . . . . . . . . 12  |-  ( b  e.  B  ->  { b }  C_  B )
7 resima2 5432 . . . . . . . . . . . 12  |-  ( { b }  C_  B  ->  ( ( F  |`  B ) " {
b } )  =  ( F " {
b } ) )
86, 7syl 17 . . . . . . . . . . 11  |-  ( b  e.  B  ->  (
( F  |`  B )
" { b } )  =  ( F
" { b } ) )
98neeq1d 2853 . . . . . . . . . 10  |-  ( b  e.  B  ->  (
( ( F  |`  B ) " {
b } )  =/= 
{ Z }  <->  ( F " { b } )  =/=  { Z }
) )
109biimpd 219 . . . . . . . . 9  |-  ( b  e.  B  ->  (
( ( F  |`  B ) " {
b } )  =/= 
{ Z }  ->  ( F " { b } )  =/=  { Z } ) )
1110adantld 483 . . . . . . . 8  |-  ( b  e.  B  ->  (
( b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } )  ->  ( F " { b } )  =/=  { Z }
) )
1211adantld 483 . . . . . . 7  |-  ( b  e.  B  ->  (
( ( F  e.  V  /\  Z  e.  W )  /\  (
b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } ) )  ->  ( F " { b } )  =/=  { Z }
) )
13 pm2.24 121 . . . . . . . . . . . 12  |-  ( b  e.  B  ->  ( -.  b  e.  B  ->  ( F " {
b } )  =/= 
{ Z } ) )
1413adantr 481 . . . . . . . . . . 11  |-  ( ( b  e.  B  /\  b  e.  dom  F )  ->  ( -.  b  e.  B  ->  ( F
" { b } )  =/=  { Z } ) )
151, 14sylbi 207 . . . . . . . . . 10  |-  ( b  e.  ( B  i^i  dom 
F )  ->  ( -.  b  e.  B  ->  ( F " {
b } )  =/= 
{ Z } ) )
1615, 3eleq2s 2719 . . . . . . . . 9  |-  ( b  e.  dom  ( F  |`  B )  ->  ( -.  b  e.  B  ->  ( F " {
b } )  =/= 
{ Z } ) )
1716ad2antrl 764 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
( -.  b  e.  B  ->  ( F " { b } )  =/=  { Z }
) )
1817com12 32 . . . . . . 7  |-  ( -.  b  e.  B  -> 
( ( ( F  e.  V  /\  Z  e.  W )  /\  (
b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } ) )  ->  ( F " { b } )  =/=  { Z }
) )
1912, 18pm2.61i 176 . . . . . 6  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
( F " {
b } )  =/= 
{ Z } )
205, 19jca 554 . . . . 5  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
( b  e.  dom  F  /\  ( F " { b } )  =/=  { Z }
) )
2120ex 450 . . . 4  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( b  e. 
dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } )  ->  (
b  e.  dom  F  /\  ( F " {
b } )  =/= 
{ Z } ) ) )
2221ss2abdv 3675 . . 3  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  { b  |  ( b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } ) }  C_  { b  |  ( b  e. 
dom  F  /\  ( F " { b } )  =/=  { Z } ) } )
23 df-rab 2921 . . 3  |-  { b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B )
" { b } )  =/=  { Z } }  =  {
b  |  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) }
24 df-rab 2921 . . 3  |-  { b  e.  dom  F  | 
( F " {
b } )  =/= 
{ Z } }  =  { b  |  ( b  e.  dom  F  /\  ( F " {
b } )  =/= 
{ Z } ) }
2522, 23, 243sstr4g 3646 . 2  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  { b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } }  C_ 
{ b  e.  dom  F  |  ( F " { b } )  =/=  { Z } } )
26 resexg 5442 . . 3  |-  ( F  e.  V  ->  ( F  |`  B )  e. 
_V )
27 suppval 7297 . . 3  |-  ( ( ( F  |`  B )  e.  _V  /\  Z  e.  W )  ->  (
( F  |`  B ) supp 
Z )  =  {
b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } }
)
2826, 27sylan 488 . 2  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( F  |`  B ) supp  Z )  =  { b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } }
)
29 suppval 7297 . 2  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( F supp  Z )  =  { b  e. 
dom  F  |  ( F " { b } )  =/=  { Z } } )
3025, 28, 293sstr4d 3648 1  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( F  |`  B ) supp  Z )  C_  ( F supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   dom cdm 5114    |` cres 5116   "cima 5117  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  fsuppres  8300  gsumzres  18310  gsumzadd  18322  gsum2dlem2  18370  tsmsres  21947
  Copyright terms: Public domain W3C validator