| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem0 | Structured version Visualization version Unicode version | ||
| Description: The closed half-spaces of
|
| Ref | Expression |
|---|---|
| sxbrsigalem0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 4469 |
. . 3
| |
| 2 | elun 3753 |
. . . 4
| |
| 3 | eqid 2622 |
. . . . . . . . 9
| |
| 4 | 3 | rnmptss 6392 |
. . . . . . . 8
|
| 5 | pnfxr 10092 |
. . . . . . . . . . 11
| |
| 6 | icossre 12254 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | mpan2 707 |
. . . . . . . . . 10
|
| 8 | xpss1 5228 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
|
| 10 | ovex 6678 |
. . . . . . . . . . 11
| |
| 11 | reex 10027 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | xpex 6962 |
. . . . . . . . . 10
|
| 13 | 12 | elpw 4164 |
. . . . . . . . 9
|
| 14 | 9, 13 | sylibr 224 |
. . . . . . . 8
|
| 15 | 4, 14 | mprg 2926 |
. . . . . . 7
|
| 16 | 15 | sseli 3599 |
. . . . . 6
|
| 17 | 16 | elpwid 4170 |
. . . . 5
|
| 18 | eqid 2622 |
. . . . . . . . 9
| |
| 19 | 18 | rnmptss 6392 |
. . . . . . . 8
|
| 20 | icossre 12254 |
. . . . . . . . . . 11
| |
| 21 | 5, 20 | mpan2 707 |
. . . . . . . . . 10
|
| 22 | xpss2 5229 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | syl 17 |
. . . . . . . . 9
|
| 24 | ovex 6678 |
. . . . . . . . . . 11
| |
| 25 | 11, 24 | xpex 6962 |
. . . . . . . . . 10
|
| 26 | 25 | elpw 4164 |
. . . . . . . . 9
|
| 27 | 23, 26 | sylibr 224 |
. . . . . . . 8
|
| 28 | 19, 27 | mprg 2926 |
. . . . . . 7
|
| 29 | 28 | sseli 3599 |
. . . . . 6
|
| 30 | 29 | elpwid 4170 |
. . . . 5
|
| 31 | 17, 30 | jaoi 394 |
. . . 4
|
| 32 | 2, 31 | sylbi 207 |
. . 3
|
| 33 | 1, 32 | mprgbir 2927 |
. 2
|
| 34 | funmpt 5926 |
. . . . . 6
| |
| 35 | rexr 10085 |
. . . . . . . . . . 11
| |
| 36 | 5 | a1i 11 |
. . . . . . . . . . 11
|
| 37 | ltpnf 11954 |
. . . . . . . . . . 11
| |
| 38 | lbico1 12228 |
. . . . . . . . . . 11
| |
| 39 | 35, 36, 37, 38 | syl3anc 1326 |
. . . . . . . . . 10
|
| 40 | 39 | anim1i 592 |
. . . . . . . . 9
|
| 41 | 40 | anim2i 593 |
. . . . . . . 8
|
| 42 | elxp7 7201 |
. . . . . . . 8
| |
| 43 | elxp7 7201 |
. . . . . . . 8
| |
| 44 | 41, 42, 43 | 3imtr4i 281 |
. . . . . . 7
|
| 45 | xp1st 7198 |
. . . . . . . 8
| |
| 46 | oveq1 6657 |
. . . . . . . . . 10
| |
| 47 | 46 | xpeq1d 5138 |
. . . . . . . . 9
|
| 48 | ovex 6678 |
. . . . . . . . . 10
| |
| 49 | 48, 11 | xpex 6962 |
. . . . . . . . 9
|
| 50 | 47, 3, 49 | fvmpt 6282 |
. . . . . . . 8
|
| 51 | 45, 50 | syl 17 |
. . . . . . 7
|
| 52 | 44, 51 | eleqtrrd 2704 |
. . . . . 6
|
| 53 | elunirn2 29451 |
. . . . . 6
| |
| 54 | 34, 52, 53 | sylancr 695 |
. . . . 5
|
| 55 | 54 | ssriv 3607 |
. . . 4
|
| 56 | ssun3 3778 |
. . . 4
| |
| 57 | 55, 56 | ax-mp 5 |
. . 3
|
| 58 | uniun 4456 |
. . 3
| |
| 59 | 57, 58 | sseqtr4i 3638 |
. 2
|
| 60 | 33, 59 | eqssi 3619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 |
| This theorem is referenced by: sxbrsigalem3 30334 sxbrsigalem2 30348 |
| Copyright terms: Public domain | W3C validator |