Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem0 Structured version   Visualization version   Unicode version

Theorem sxbrsigalem0 30333
Description: The closed half-spaces of  ( RR  X.  RR ) cover  ( RR 
X.  RR ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Assertion
Ref Expression
sxbrsigalem0  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  =  ( RR  X.  RR )
Distinct variable group:    e, f

Proof of Theorem sxbrsigalem0
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 unissb 4469 . . 3  |-  ( U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) 
C_  ( RR  X.  RR )  <->  A. z  e.  ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) z  C_  ( RR  X.  RR ) )
2 elun 3753 . . . 4  |-  ( z  e.  ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) )  <-> 
( z  e.  ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  \/  z  e.  ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) ) )
3 eqid 2622 . . . . . . . . 9  |-  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  =  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )
43rnmptss 6392 . . . . . . . 8  |-  ( A. e  e.  RR  (
( e [,) +oo )  X.  RR )  e. 
~P ( RR  X.  RR )  ->  ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) 
C_  ~P ( RR  X.  RR ) )
5 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
6 icossre 12254 . . . . . . . . . . 11  |-  ( ( e  e.  RR  /\ +oo  e.  RR* )  ->  (
e [,) +oo )  C_  RR )
75, 6mpan2 707 . . . . . . . . . 10  |-  ( e  e.  RR  ->  (
e [,) +oo )  C_  RR )
8 xpss1 5228 . . . . . . . . . 10  |-  ( ( e [,) +oo )  C_  RR  ->  ( (
e [,) +oo )  X.  RR )  C_  ( RR  X.  RR ) )
97, 8syl 17 . . . . . . . . 9  |-  ( e  e.  RR  ->  (
( e [,) +oo )  X.  RR )  C_  ( RR  X.  RR ) )
10 ovex 6678 . . . . . . . . . . 11  |-  ( e [,) +oo )  e. 
_V
11 reex 10027 . . . . . . . . . . 11  |-  RR  e.  _V
1210, 11xpex 6962 . . . . . . . . . 10  |-  ( ( e [,) +oo )  X.  RR )  e.  _V
1312elpw 4164 . . . . . . . . 9  |-  ( ( ( e [,) +oo )  X.  RR )  e. 
~P ( RR  X.  RR )  <->  ( ( e [,) +oo )  X.  RR )  C_  ( RR  X.  RR ) )
149, 13sylibr 224 . . . . . . . 8  |-  ( e  e.  RR  ->  (
( e [,) +oo )  X.  RR )  e. 
~P ( RR  X.  RR ) )
154, 14mprg 2926 . . . . . . 7  |-  ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) 
C_  ~P ( RR  X.  RR )
1615sseli 3599 . . . . . 6  |-  ( z  e.  ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  -> 
z  e.  ~P ( RR  X.  RR ) )
1716elpwid 4170 . . . . 5  |-  ( z  e.  ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  -> 
z  C_  ( RR  X.  RR ) )
18 eqid 2622 . . . . . . . . 9  |-  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  =  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) )
1918rnmptss 6392 . . . . . . . 8  |-  ( A. f  e.  RR  ( RR  X.  ( f [,) +oo ) )  e.  ~P ( RR  X.  RR )  ->  ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) )  C_  ~P ( RR  X.  RR ) )
20 icossre 12254 . . . . . . . . . . 11  |-  ( ( f  e.  RR  /\ +oo  e.  RR* )  ->  (
f [,) +oo )  C_  RR )
215, 20mpan2 707 . . . . . . . . . 10  |-  ( f  e.  RR  ->  (
f [,) +oo )  C_  RR )
22 xpss2 5229 . . . . . . . . . 10  |-  ( ( f [,) +oo )  C_  RR  ->  ( RR  X.  ( f [,) +oo ) )  C_  ( RR  X.  RR ) )
2321, 22syl 17 . . . . . . . . 9  |-  ( f  e.  RR  ->  ( RR  X.  ( f [,) +oo ) )  C_  ( RR  X.  RR ) )
24 ovex 6678 . . . . . . . . . . 11  |-  ( f [,) +oo )  e. 
_V
2511, 24xpex 6962 . . . . . . . . . 10  |-  ( RR 
X.  ( f [,) +oo ) )  e.  _V
2625elpw 4164 . . . . . . . . 9  |-  ( ( RR  X.  ( f [,) +oo ) )  e.  ~P ( RR 
X.  RR )  <->  ( RR  X.  ( f [,) +oo ) )  C_  ( RR  X.  RR ) )
2723, 26sylibr 224 . . . . . . . 8  |-  ( f  e.  RR  ->  ( RR  X.  ( f [,) +oo ) )  e.  ~P ( RR  X.  RR ) )
2819, 27mprg 2926 . . . . . . 7  |-  ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) )  C_  ~P ( RR  X.  RR )
2928sseli 3599 . . . . . 6  |-  ( z  e.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  -> 
z  e.  ~P ( RR  X.  RR ) )
3029elpwid 4170 . . . . 5  |-  ( z  e.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) )  -> 
z  C_  ( RR  X.  RR ) )
3117, 30jaoi 394 . . . 4  |-  ( ( z  e.  ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  \/  z  e.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  -> 
z  C_  ( RR  X.  RR ) )
322, 31sylbi 207 . . 3  |-  ( z  e.  ( ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR 
X.  ( f [,) +oo ) ) ) )  ->  z  C_  ( RR  X.  RR ) )
331, 32mprgbir 2927 . 2  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  C_  ( RR  X.  RR )
34 funmpt 5926 . . . . . 6  |-  Fun  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )
35 rexr 10085 . . . . . . . . . . 11  |-  ( ( 1st `  z )  e.  RR  ->  ( 1st `  z )  e. 
RR* )
365a1i 11 . . . . . . . . . . 11  |-  ( ( 1st `  z )  e.  RR  -> +oo  e.  RR* )
37 ltpnf 11954 . . . . . . . . . . 11  |-  ( ( 1st `  z )  e.  RR  ->  ( 1st `  z )  < +oo )
38 lbico1 12228 . . . . . . . . . . 11  |-  ( ( ( 1st `  z
)  e.  RR*  /\ +oo  e.  RR*  /\  ( 1st `  z )  < +oo )  ->  ( 1st `  z
)  e.  ( ( 1st `  z ) [,) +oo ) )
3935, 36, 37, 38syl3anc 1326 . . . . . . . . . 10  |-  ( ( 1st `  z )  e.  RR  ->  ( 1st `  z )  e.  ( ( 1st `  z
) [,) +oo )
)
4039anim1i 592 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR )  -> 
( ( 1st `  z
)  e.  ( ( 1st `  z ) [,) +oo )  /\  ( 2nd `  z )  e.  RR ) )
4140anim2i 593 . . . . . . . 8  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR ) )  ->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  ( ( 1st `  z
) [,) +oo )  /\  ( 2nd `  z
)  e.  RR ) ) )
42 elxp7 7201 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  <->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  RR  /\  ( 2nd `  z
)  e.  RR ) ) )
43 elxp7 7201 . . . . . . . 8  |-  ( z  e.  ( ( ( 1st `  z ) [,) +oo )  X.  RR )  <->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  ( ( 1st `  z
) [,) +oo )  /\  ( 2nd `  z
)  e.  RR ) ) )
4441, 42, 433imtr4i 281 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  z  e.  ( ( ( 1st `  z ) [,) +oo )  X.  RR ) )
45 xp1st 7198 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
46 oveq1 6657 . . . . . . . . . 10  |-  ( e  =  ( 1st `  z
)  ->  ( e [,) +oo )  =  ( ( 1st `  z
) [,) +oo )
)
4746xpeq1d 5138 . . . . . . . . 9  |-  ( e  =  ( 1st `  z
)  ->  ( (
e [,) +oo )  X.  RR )  =  ( ( ( 1st `  z
) [,) +oo )  X.  RR ) )
48 ovex 6678 . . . . . . . . . 10  |-  ( ( 1st `  z ) [,) +oo )  e. 
_V
4948, 11xpex 6962 . . . . . . . . 9  |-  ( ( ( 1st `  z
) [,) +oo )  X.  RR )  e.  _V
5047, 3, 49fvmpt 6282 . . . . . . . 8  |-  ( ( 1st `  z )  e.  RR  ->  (
( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `  ( 1st `  z ) )  =  ( ( ( 1st `  z ) [,) +oo )  X.  RR ) )
5145, 50syl 17 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `
 ( 1st `  z
) )  =  ( ( ( 1st `  z
) [,) +oo )  X.  RR ) )
5244, 51eleqtrrd 2704 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  z  e.  ( ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `  ( 1st `  z ) ) )
53 elunirn2 29451 . . . . . 6  |-  ( ( Fun  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  /\  z  e.  ( (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) `
 ( 1st `  z
) ) )  -> 
z  e.  U. ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) )
5434, 52, 53sylancr 695 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  z  e. 
U. ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) ) )
5554ssriv 3607 . . . 4  |-  ( RR 
X.  RR )  C_  U.
ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )
56 ssun3 3778 . . . 4  |-  ( ( RR  X.  RR ) 
C_  U. ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  -> 
( RR  X.  RR )  C_  ( U. ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  U. ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) ) )
5755, 56ax-mp 5 . . 3  |-  ( RR 
X.  RR )  C_  ( U. ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
U. ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )
58 uniun 4456 . . 3  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  =  ( U. ran  (
e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  U. ran  (
f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )
5957, 58sseqtr4i 3638 . 2  |-  ( RR 
X.  RR )  C_  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u. 
ran  ( f  e.  RR  |->  ( RR  X.  ( f [,) +oo ) ) ) )
6033, 59eqssi 3619 1  |-  U. ( ran  ( e  e.  RR  |->  ( ( e [,) +oo )  X.  RR ) )  u.  ran  ( f  e.  RR  |->  ( RR  X.  (
f [,) +oo )
) ) )  =  ( RR  X.  RR )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181
This theorem is referenced by:  sxbrsigalem3  30334  sxbrsigalem2  30348
  Copyright terms: Public domain W3C validator