Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ffzoeq Structured version   Visualization version   Unicode version

Theorem 2ffzoeq 41338
Description: Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
2ffzoeq  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) )  ->  ( F  =  P  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
Distinct variable groups:    i, F    i, M    P, i
Allowed substitution hints:    N( i)    X( i)    Y( i)

Proof of Theorem 2ffzoeq
StepHypRef Expression
1 eqeq1 2626 . . . . . . . . . . . 12  |-  ( F  =  P  ->  ( F  =  (/)  <->  P  =  (/) ) )
21anbi1d 741 . . . . . . . . . . 11  |-  ( F  =  P  ->  (
( F  =  (/)  /\  P : ( 0..^ N ) --> Y )  <-> 
( P  =  (/)  /\  P : ( 0..^ N ) --> Y ) ) )
3 f0bi 6088 . . . . . . . . . . . . 13  |-  ( P : (/) --> Y  <->  P  =  (/) )
4 ffn 6045 . . . . . . . . . . . . . 14  |-  ( P : ( 0..^ N ) --> Y  ->  P  Fn  ( 0..^ N ) )
5 ffn 6045 . . . . . . . . . . . . . 14  |-  ( P : (/) --> Y  ->  P  Fn  (/) )
6 fndmu 5992 . . . . . . . . . . . . . . . 16  |-  ( ( P  Fn  ( 0..^ N )  /\  P  Fn  (/) )  ->  (
0..^ N )  =  (/) )
7 0z 11388 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
8 nn0z 11400 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  N  e.  ZZ )
98adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
10 fzon 12489 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <_  0  <->  ( 0..^ N )  =  (/) ) )
117, 9, 10sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <_  0  <->  ( 0..^ N )  =  (/) ) )
12 nn0ge0 11318 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  0  <_  N )
13 0red 10041 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  0  e.  RR )
14 nn0re 11301 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
1513, 14letri3d 10179 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( 0  =  N  <->  ( 0  <_  N  /\  N  <_  0 ) ) )
1615biimprd 238 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( ( 0  <_  N  /\  N  <_  0 )  -> 
0  =  N ) )
1712, 16mpand 711 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  <_  0  ->  0  =  N ) )
1817adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <_  0  ->  0  =  N ) )
1911, 18sylbird 250 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0..^ N )  =  (/)  ->  0  =  N ) )
206, 19syl5com 31 . . . . . . . . . . . . . . 15  |-  ( ( P  Fn  ( 0..^ N )  /\  P  Fn  (/) )  ->  (
( M  e.  NN0  /\  N  e.  NN0 )  ->  0  =  N ) )
2120ex 450 . . . . . . . . . . . . . 14  |-  ( P  Fn  ( 0..^ N )  ->  ( P  Fn  (/)  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  0  =  N ) ) )
224, 5, 21syl2imc 41 . . . . . . . . . . . . 13  |-  ( P : (/) --> Y  ->  ( P : ( 0..^ N ) --> Y  ->  (
( M  e.  NN0  /\  N  e.  NN0 )  ->  0  =  N ) ) )
233, 22sylbir 225 . . . . . . . . . . . 12  |-  ( P  =  (/)  ->  ( P : ( 0..^ N ) --> Y  ->  (
( M  e.  NN0  /\  N  e.  NN0 )  ->  0  =  N ) ) )
2423imp 445 . . . . . . . . . . 11  |-  ( ( P  =  (/)  /\  P : ( 0..^ N ) --> Y )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  0  =  N ) )
252, 24syl6bi 243 . . . . . . . . . 10  |-  ( F  =  P  ->  (
( F  =  (/)  /\  P : ( 0..^ N ) --> Y )  ->  ( ( M  e.  NN0  /\  N  e. 
NN0 )  ->  0  =  N ) ) )
2625com3l 89 . . . . . . . . 9  |-  ( ( F  =  (/)  /\  P : ( 0..^ N ) --> Y )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( F  =  P  ->  0  =  N ) ) )
2726a1i 11 . . . . . . . 8  |-  ( M  =  0  ->  (
( F  =  (/)  /\  P : ( 0..^ N ) --> Y )  ->  ( ( M  e.  NN0  /\  N  e. 
NN0 )  ->  ( F  =  P  ->  0  =  N ) ) ) )
28 oveq2 6658 . . . . . . . . . . . 12  |-  ( M  =  0  ->  (
0..^ M )  =  ( 0..^ 0 ) )
29 fzo0 12492 . . . . . . . . . . . 12  |-  ( 0..^ 0 )  =  (/)
3028, 29syl6eq 2672 . . . . . . . . . . 11  |-  ( M  =  0  ->  (
0..^ M )  =  (/) )
3130feq2d 6031 . . . . . . . . . 10  |-  ( M  =  0  ->  ( F : ( 0..^ M ) --> X  <->  F : (/) --> X ) )
32 f0bi 6088 . . . . . . . . . 10  |-  ( F : (/) --> X  <->  F  =  (/) )
3331, 32syl6bb 276 . . . . . . . . 9  |-  ( M  =  0  ->  ( F : ( 0..^ M ) --> X  <->  F  =  (/) ) )
3433anbi1d 741 . . . . . . . 8  |-  ( M  =  0  ->  (
( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  <->  ( F  =  (/)  /\  P : ( 0..^ N ) --> Y ) ) )
35 eqeq1 2626 . . . . . . . . . 10  |-  ( M  =  0  ->  ( M  =  N  <->  0  =  N ) )
3635imbi2d 330 . . . . . . . . 9  |-  ( M  =  0  ->  (
( F  =  P  ->  M  =  N )  <->  ( F  =  P  ->  0  =  N ) ) )
3736imbi2d 330 . . . . . . . 8  |-  ( M  =  0  ->  (
( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( F  =  P  ->  M  =  N ) )  <->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( F  =  P  ->  0  =  N ) ) ) )
3827, 34, 373imtr4d 283 . . . . . . 7  |-  ( M  =  0  ->  (
( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( F  =  P  ->  M  =  N ) ) ) )
3938com3l 89 . . . . . 6  |-  ( ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( M  =  0  ->  ( F  =  P  ->  M  =  N ) ) ) )
4039impcom 446 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) )  ->  ( M  =  0  ->  ( F  =  P  ->  M  =  N )
) )
4140impcom 446 . . . 4  |-  ( ( M  =  0  /\  ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( F  =  P  ->  M  =  N ) )
4228feq2d 6031 . . . . . . . . . . . 12  |-  ( M  =  0  ->  ( F : ( 0..^ M ) --> X  <->  F :
( 0..^ 0 ) --> X ) )
4329feq2i 6037 . . . . . . . . . . . . 13  |-  ( F : ( 0..^ 0 ) --> X  <->  F : (/) --> X )
4443, 32bitri 264 . . . . . . . . . . . 12  |-  ( F : ( 0..^ 0 ) --> X  <->  F  =  (/) )
4542, 44syl6bb 276 . . . . . . . . . . 11  |-  ( M  =  0  ->  ( F : ( 0..^ M ) --> X  <->  F  =  (/) ) )
4645adantr 481 . . . . . . . . . 10  |-  ( ( M  =  0  /\  M  =  N )  ->  ( F :
( 0..^ M ) --> X  <->  F  =  (/) ) )
47 eqeq1 2626 . . . . . . . . . . . 12  |-  ( M  =  N  ->  ( M  =  0  <->  N  = 
0 ) )
4847biimpac 503 . . . . . . . . . . 11  |-  ( ( M  =  0  /\  M  =  N )  ->  N  =  0 )
49 oveq2 6658 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  (
0..^ N )  =  ( 0..^ 0 ) )
5049feq2d 6031 . . . . . . . . . . . 12  |-  ( N  =  0  ->  ( P : ( 0..^ N ) --> Y  <->  P :
( 0..^ 0 ) --> Y ) )
5129feq2i 6037 . . . . . . . . . . . . 13  |-  ( P : ( 0..^ 0 ) --> Y  <->  P : (/) --> Y )
5251, 3bitri 264 . . . . . . . . . . . 12  |-  ( P : ( 0..^ 0 ) --> Y  <->  P  =  (/) )
5350, 52syl6bb 276 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( P : ( 0..^ N ) --> Y  <->  P  =  (/) ) )
5448, 53syl 17 . . . . . . . . . 10  |-  ( ( M  =  0  /\  M  =  N )  ->  ( P :
( 0..^ N ) --> Y  <->  P  =  (/) ) )
5546, 54anbi12d 747 . . . . . . . . 9  |-  ( ( M  =  0  /\  M  =  N )  ->  ( ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  <->  ( F  =  (/)  /\  P  =  (/) ) ) )
56 eqtr3 2643 . . . . . . . . 9  |-  ( ( F  =  (/)  /\  P  =  (/) )  ->  F  =  P )
5755, 56syl6bi 243 . . . . . . . 8  |-  ( ( M  =  0  /\  M  =  N )  ->  ( ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  ->  F  =  P )
)
5857com12 32 . . . . . . 7  |-  ( ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  -> 
( ( M  =  0  /\  M  =  N )  ->  F  =  P ) )
5958expd 452 . . . . . 6  |-  ( ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  -> 
( M  =  0  ->  ( M  =  N  ->  F  =  P ) ) )
6059adantl 482 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) )  ->  ( M  =  0  ->  ( M  =  N  ->  F  =  P )
) )
6160impcom 446 . . . 4  |-  ( ( M  =  0  /\  ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( M  =  N  ->  F  =  P ) )
6241, 61impbid 202 . . 3  |-  ( ( M  =  0  /\  ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( F  =  P  <->  M  =  N
) )
63 ral0 4076 . . . . . 6  |-  A. i  e.  (/)  ( F `  i )  =  ( P `  i )
6430raleqdv 3144 . . . . . 6  |-  ( M  =  0  ->  ( A. i  e.  (
0..^ M ) ( F `  i )  =  ( P `  i )  <->  A. i  e.  (/)  ( F `  i )  =  ( P `  i ) ) )
6563, 64mpbiri 248 . . . . 5  |-  ( M  =  0  ->  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) )
6665biantrud 528 . . . 4  |-  ( M  =  0  ->  ( M  =  N  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
6766adantr 481 . . 3  |-  ( ( M  =  0  /\  ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( M  =  N  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
6862, 67bitrd 268 . 2  |-  ( ( M  =  0  /\  ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( F  =  P  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
69 ffn 6045 . . . . . . 7  |-  ( F : ( 0..^ M ) --> X  ->  F  Fn  ( 0..^ M ) )
7069, 4anim12i 590 . . . . . 6  |-  ( ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y )  -> 
( F  Fn  (
0..^ M )  /\  P  Fn  ( 0..^ N ) ) )
7170adantl 482 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) )  ->  ( F  Fn  ( 0..^ M )  /\  P  Fn  ( 0..^ N ) ) )
7271adantl 482 . . . 4  |-  ( ( -.  M  =  0  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( F  Fn  ( 0..^ M )  /\  P  Fn  (
0..^ N ) ) )
73 eqfnfv2 6312 . . . 4  |-  ( ( F  Fn  ( 0..^ M )  /\  P  Fn  ( 0..^ N ) )  ->  ( F  =  P  <->  ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) ) ) )
7472, 73syl 17 . . 3  |-  ( ( -.  M  =  0  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( F  =  P  <->  ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) ) ) )
75 df-ne 2795 . . . . . 6  |-  ( M  =/=  0  <->  -.  M  =  0 )
76 elnnne0 11306 . . . . . . . 8  |-  ( M  e.  NN  <->  ( M  e.  NN0  /\  M  =/=  0 ) )
77 0zd 11389 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  0  e.  ZZ )
78 nnz 11399 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  M  e.  ZZ )
79 nngt0 11049 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  0  <  M )
8077, 78, 793jca 1242 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
0  e.  ZZ  /\  M  e.  ZZ  /\  0  <  M ) )
8180adantr 481 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( 0  e.  ZZ  /\  M  e.  ZZ  /\  0  <  M ) )
82 fzoopth 41337 . . . . . . . . . . . . 13  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ  /\  0  <  M )  ->  (
( 0..^ M )  =  ( 0..^ N )  <->  ( 0  =  0  /\  M  =  N ) ) )
8381, 82syl 17 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( 0..^ M )  =  ( 0..^ N )  <->  ( 0  =  0  /\  M  =  N ) ) )
84 simpr 477 . . . . . . . . . . . 12  |-  ( ( 0  =  0  /\  M  =  N )  ->  M  =  N )
8583, 84syl6bi 243 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( 0..^ M )  =  ( 0..^ N )  ->  M  =  N ) )
8685anim1d 588 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  ->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) ) ) )
87 oveq2 6658 . . . . . . . . . . 11  |-  ( M  =  N  ->  (
0..^ M )  =  ( 0..^ N ) )
8887anim1i 592 . . . . . . . . . 10  |-  ( ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  ->  (
( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) )
8986, 88impbid1 215 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
9089ex 450 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  e.  NN0  ->  (
( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) ) )
9176, 90sylbir 225 . . . . . . 7  |-  ( ( M  e.  NN0  /\  M  =/=  0 )  -> 
( N  e.  NN0  ->  ( ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) ) )
9291impancom 456 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  =/=  0  ->  ( ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) ) )
9375, 92syl5bir 233 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  M  =  0  ->  ( (
( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) )  <-> 
( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) ) )
9493adantr 481 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) )  ->  ( -.  M  =  0  ->  ( ( ( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `
 i )  =  ( P `  i
) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) ) )
9594impcom 446 . . 3  |-  ( ( -.  M  =  0  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( (
( 0..^ M )  =  ( 0..^ N )  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) )  <-> 
( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
9674, 95bitrd 268 . 2  |-  ( ( -.  M  =  0  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) ) )  ->  ( F  =  P  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
9768, 96pm2.61ian 831 1  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( F : ( 0..^ M ) --> X  /\  P : ( 0..^ N ) --> Y ) )  ->  ( F  =  P  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( F `  i
)  =  ( P `
 i ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   class class class wbr 4653    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator