| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgval2 | Structured version Visualization version Unicode version | ||
| Description: Definition of a topology
generated by a basis in [Munkres] p. 78.
Later
we show (in tgcl 20773) that |
| Ref | Expression |
|---|---|
| tgval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 20759 |
. 2
| |
| 2 | inss1 3833 |
. . . . . . . . 9
| |
| 3 | 2 | unissi 4461 |
. . . . . . . 8
|
| 4 | 3 | sseli 3599 |
. . . . . . 7
|
| 5 | 4 | pm4.71ri 665 |
. . . . . 6
|
| 6 | 5 | ralbii 2980 |
. . . . 5
|
| 7 | r19.26 3064 |
. . . . 5
| |
| 8 | 6, 7 | bitri 264 |
. . . 4
|
| 9 | dfss3 3592 |
. . . 4
| |
| 10 | dfss3 3592 |
. . . . 5
| |
| 11 | elin 3796 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi2i 730 |
. . . . . . . . . 10
|
| 13 | an12 838 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 264 |
. . . . . . . . 9
|
| 15 | 14 | exbii 1774 |
. . . . . . . 8
|
| 16 | eluni 4439 |
. . . . . . . 8
| |
| 17 | df-rex 2918 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3bitr4i 292 |
. . . . . . 7
|
| 19 | selpw 4165 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2i 730 |
. . . . . . . 8
|
| 21 | 20 | rexbii 3041 |
. . . . . . 7
|
| 22 | 18, 21 | bitr2i 265 |
. . . . . 6
|
| 23 | 22 | ralbii 2980 |
. . . . 5
|
| 24 | 10, 23 | anbi12i 733 |
. . . 4
|
| 25 | 8, 9, 24 | 3bitr4i 292 |
. . 3
|
| 26 | 25 | abbii 2739 |
. 2
|
| 27 | 1, 26 | syl6eq 2672 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 |
| This theorem is referenced by: eltg2 20762 |
| Copyright terms: Public domain | W3C validator |