Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmeet Structured version   Visualization version   Unicode version

Theorem topmeet 32359
Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmeet  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  =  U. {
k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j } )
Distinct variable groups:    j, k, S    j, V, k    j, X, k

Proof of Theorem topmeet
StepHypRef Expression
1 topmtcl 32358 . . . 4  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  e.  (TopOn `  X ) )
2 inss2 3834 . . . . . . 7  |-  ( ~P X  i^i  |^| S
)  C_  |^| S
3 intss1 4492 . . . . . . 7  |-  ( j  e.  S  ->  |^| S  C_  j )
42, 3syl5ss 3614 . . . . . 6  |-  ( j  e.  S  ->  ( ~P X  i^i  |^| S
)  C_  j )
54rgen 2922 . . . . 5  |-  A. j  e.  S  ( ~P X  i^i  |^| S )  C_  j
6 sseq1 3626 . . . . . . 7  |-  ( k  =  ( ~P X  i^i  |^| S )  -> 
( k  C_  j  <->  ( ~P X  i^i  |^| S )  C_  j
) )
76ralbidv 2986 . . . . . 6  |-  ( k  =  ( ~P X  i^i  |^| S )  -> 
( A. j  e.  S  k  C_  j  <->  A. j  e.  S  ( ~P X  i^i  |^| S )  C_  j
) )
87elrab 3363 . . . . 5  |-  ( ( ~P X  i^i  |^| S )  e.  {
k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j }  <->  ( ( ~P X  i^i  |^| S
)  e.  (TopOn `  X )  /\  A. j  e.  S  ( ~P X  i^i  |^| S
)  C_  j )
)
95, 8mpbiran2 954 . . . 4  |-  ( ( ~P X  i^i  |^| S )  e.  {
k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j }  <->  ( ~P X  i^i  |^| S )  e.  (TopOn `  X )
)
101, 9sylibr 224 . . 3  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  e.  { k  e.  (TopOn `  X
)  |  A. j  e.  S  k  C_  j } )
11 elssuni 4467 . . 3  |-  ( ( ~P X  i^i  |^| S )  e.  {
k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j }  ->  ( ~P X  i^i  |^| S
)  C_  U. { k  e.  (TopOn `  X
)  |  A. j  e.  S  k  C_  j } )
1210, 11syl 17 . 2  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  C_  U. { k  e.  (TopOn `  X
)  |  A. j  e.  S  k  C_  j } )
13 toponuni 20719 . . . . . . . . 9  |-  ( k  e.  (TopOn `  X
)  ->  X  =  U. k )
14 eqimss2 3658 . . . . . . . . 9  |-  ( X  =  U. k  ->  U. k  C_  X )
1513, 14syl 17 . . . . . . . 8  |-  ( k  e.  (TopOn `  X
)  ->  U. k  C_  X )
16 sspwuni 4611 . . . . . . . 8  |-  ( k 
C_  ~P X  <->  U. k  C_  X )
1715, 16sylibr 224 . . . . . . 7  |-  ( k  e.  (TopOn `  X
)  ->  k  C_  ~P X )
18173ad2ant2 1083 . . . . . 6  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  k  e.  (TopOn `  X
)  /\  A. j  e.  S  k  C_  j )  ->  k  C_ 
~P X )
19 simp3 1063 . . . . . . 7  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  k  e.  (TopOn `  X
)  /\  A. j  e.  S  k  C_  j )  ->  A. j  e.  S  k  C_  j )
20 ssint 4493 . . . . . . 7  |-  ( k 
C_  |^| S  <->  A. j  e.  S  k  C_  j )
2119, 20sylibr 224 . . . . . 6  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  k  e.  (TopOn `  X
)  /\  A. j  e.  S  k  C_  j )  ->  k  C_ 
|^| S )
2218, 21ssind 3837 . . . . 5  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  k  e.  (TopOn `  X
)  /\  A. j  e.  S  k  C_  j )  ->  k  C_  ( ~P X  i^i  |^| S ) )
23 selpw 4165 . . . . 5  |-  ( k  e.  ~P ( ~P X  i^i  |^| S
)  <->  k  C_  ( ~P X  i^i  |^| S
) )
2422, 23sylibr 224 . . . 4  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  k  e.  (TopOn `  X
)  /\  A. j  e.  S  k  C_  j )  ->  k  e.  ~P ( ~P X  i^i  |^| S ) )
2524rabssdv 3682 . . 3  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  { k  e.  (TopOn `  X
)  |  A. j  e.  S  k  C_  j }  C_  ~P ( ~P X  i^i  |^| S
) )
26 sspwuni 4611 . . 3  |-  ( { k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j }  C_  ~P ( ~P X  i^i  |^| S )  <->  U. { k  e.  (TopOn `  X
)  |  A. j  e.  S  k  C_  j }  C_  ( ~P X  i^i  |^| S
) )
2725, 26sylib 208 . 2  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  U. {
k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j }  C_  ( ~P X  i^i  |^| S
) )
2812, 27eqssd 3620 1  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  =  U. {
k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   ` cfv 5888  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246  df-top 20699  df-topon 20716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator