| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclun | Structured version Visualization version Unicode version | ||
| Description: Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.) |
| Ref | Expression |
|---|---|
| trclun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 3787 |
. . . . . . . . . 10
| |
| 2 | simpl 473 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | sylbir 225 |
. . . . . . . . 9
|
| 4 | vex 3203 |
. . . . . . . . . . 11
| |
| 5 | trcleq2lem 13730 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | elab 3350 |
. . . . . . . . . 10
|
| 7 | 6 | biimpri 218 |
. . . . . . . . 9
|
| 8 | 3, 7 | sylan 488 |
. . . . . . . 8
|
| 9 | intss1 4492 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
|
| 11 | simpr 477 |
. . . . . . . . . 10
| |
| 12 | 1, 11 | sylbir 225 |
. . . . . . . . 9
|
| 13 | trcleq2lem 13730 |
. . . . . . . . . . 11
| |
| 14 | 4, 13 | elab 3350 |
. . . . . . . . . 10
|
| 15 | 14 | biimpri 218 |
. . . . . . . . 9
|
| 16 | 12, 15 | sylan 488 |
. . . . . . . 8
|
| 17 | intss1 4492 |
. . . . . . . 8
| |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
|
| 19 | 10, 18 | unssd 3789 |
. . . . . 6
|
| 20 | simpr 477 |
. . . . . 6
| |
| 21 | 19, 20 | jca 554 |
. . . . 5
|
| 22 | ssmin 4496 |
. . . . . . . 8
| |
| 23 | ssmin 4496 |
. . . . . . . 8
| |
| 24 | unss12 3785 |
. . . . . . . 8
| |
| 25 | 22, 23, 24 | mp2an 708 |
. . . . . . 7
|
| 26 | sstr 3611 |
. . . . . . 7
| |
| 27 | 25, 26 | mpan 706 |
. . . . . 6
|
| 28 | 27 | anim1i 592 |
. . . . 5
|
| 29 | 21, 28 | impbii 199 |
. . . 4
|
| 30 | 29 | abbii 2739 |
. . 3
|
| 31 | 30 | inteqi 4479 |
. 2
|
| 32 | unexg 6959 |
. . 3
| |
| 33 | trclfv 13741 |
. . 3
| |
| 34 | 32, 33 | syl 17 |
. 2
|
| 35 | simpl 473 |
. . . . . 6
| |
| 36 | trclfv 13741 |
. . . . . 6
| |
| 37 | 35, 36 | syl 17 |
. . . . 5
|
| 38 | simpr 477 |
. . . . . 6
| |
| 39 | trclfv 13741 |
. . . . . 6
| |
| 40 | 38, 39 | syl 17 |
. . . . 5
|
| 41 | 37, 40 | uneq12d 3768 |
. . . 4
|
| 42 | 41 | fveq2d 6195 |
. . 3
|
| 43 | fvex 6201 |
. . . . . 6
| |
| 44 | 36, 43 | syl6eqelr 2710 |
. . . . 5
|
| 45 | fvex 6201 |
. . . . . 6
| |
| 46 | 39, 45 | syl6eqelr 2710 |
. . . . 5
|
| 47 | unexg 6959 |
. . . . 5
| |
| 48 | 44, 46, 47 | syl2an 494 |
. . . 4
|
| 49 | trclfv 13741 |
. . . 4
| |
| 50 | 48, 49 | syl 17 |
. . 3
|
| 51 | 42, 50 | eqtrd 2656 |
. 2
|
| 52 | 31, 34, 51 | 3eqtr4a 2682 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-trcl 13726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |