Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtconnlem1 Structured version   Visualization version   Unicode version

Theorem ordtconnlem1 29970
Description: Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn 29971. See also reconnlem1 22629. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Hypotheses
Ref Expression
ordtconn.x  |-  B  =  ( Base `  K
)
ordtconn.l  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
ordtconn.j  |-  J  =  (ordTop `  .<_  )
Assertion
Ref Expression
ordtconnlem1  |-  ( ( K  e. Toset  /\  A  C_  B )  ->  (
( Jt  A )  e. Conn  ->  A. x  e.  A  A. y  e.  A  A. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  -> 
r  e.  A ) ) )
Distinct variable groups:    x, r,
y, A    B, r, x, y    J, r    K, r, x, y    x,  .<_ , y
Allowed substitution hints:    J( x, y)    .<_ ( r)

Proof of Theorem ordtconnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . 5  |-  F/ r ( K  e. Toset  /\  A  C_  B )
2 nfcv 2764 . . . . . . 7  |-  F/_ r A
3 nfra2 2946 . . . . . . 7  |-  F/ r A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
)
42, 3nfral 2945 . . . . . 6  |-  F/ r A. x  e.  A  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
)
54nfn 1784 . . . . 5  |-  F/ r  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( ( x 
.<_  r  /\  r  .<_  y )  ->  r  e.  A )
61, 5nfan 1828 . . . 4  |-  F/ r ( ( K  e. Toset  /\  A  C_  B )  /\  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( (
x  .<_  r  /\  r  .<_  y )  ->  r  e.  A ) )
7 tospos 29658 . . . . . . . . . 10  |-  ( K  e. Toset  ->  K  e.  Poset )
8 posprs 16949 . . . . . . . . . 10  |-  ( K  e.  Poset  ->  K  e.  Preset  )
9 ordtconn.j . . . . . . . . . . 11  |-  J  =  (ordTop `  .<_  )
10 ordtconn.l . . . . . . . . . . . . . 14  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
11 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( le
`  K )  e. 
_V
1211inex1 4799 . . . . . . . . . . . . . 14  |-  ( ( le `  K )  i^i  ( B  X.  B ) )  e. 
_V
1310, 12eqeltri 2697 . . . . . . . . . . . . 13  |-  .<_  e.  _V
14 eqid 2622 . . . . . . . . . . . . . 14  |-  dom  .<_  =  dom  .<_
1514ordttopon 20997 . . . . . . . . . . . . 13  |-  (  .<_  e.  _V  ->  (ordTop `  .<_  )  e.  (TopOn `  dom  .<_  ) )
1613, 15ax-mp 5 . . . . . . . . . . . 12  |-  (ordTop `  .<_  )  e.  (TopOn `  dom  .<_  )
17 ordtconn.x . . . . . . . . . . . . . 14  |-  B  =  ( Base `  K
)
1817, 10prsdm 29960 . . . . . . . . . . . . 13  |-  ( K  e.  Preset  ->  dom  .<_  =  B )
1918fveq2d 6195 . . . . . . . . . . . 12  |-  ( K  e.  Preset  ->  (TopOn `  dom  .<_  )  =  (TopOn `  B
) )
2016, 19syl5eleq 2707 . . . . . . . . . . 11  |-  ( K  e.  Preset  ->  (ordTop `  .<_  )  e.  (TopOn `  B )
)
219, 20syl5eqel 2705 . . . . . . . . . 10  |-  ( K  e.  Preset  ->  J  e.  (TopOn `  B ) )
227, 8, 213syl 18 . . . . . . . . 9  |-  ( K  e. Toset  ->  J  e.  (TopOn `  B ) )
2322ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  J  e.  (TopOn `  B )
)
2423adantlr 751 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  J  e.  (TopOn `  B )
)
25 simpllr 799 . . . . . . . 8  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  A  C_  B )
2625adantlr 751 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  A  C_  B )
27 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  K  e. Toset )
2827, 7, 83syl 18 . . . . . . . . . . 11  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  K  e.  Preset  )
29 snex 4908 . . . . . . . . . . . . . . . 16  |-  { B }  e.  _V
30 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  K )  e.  _V
3117, 30eqeltri 2697 . . . . . . . . . . . . . . . . . . 19  |-  B  e. 
_V
3231mptex 6486 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  e.  _V
3332rnex 7100 . . . . . . . . . . . . . . . . 17  |-  ran  (
x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  e.  _V
3431mptex 6486 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  e.  _V
3534rnex 7100 . . . . . . . . . . . . . . . . 17  |-  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  e.  _V
3633, 35unex 6956 . . . . . . . . . . . . . . . 16  |-  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) )  e.  _V
3729, 36unex 6956 . . . . . . . . . . . . . . 15  |-  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) )  e. 
_V
38 ssfii 8325 . . . . . . . . . . . . . . 15  |-  ( ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  u. 
ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) )  e.  _V  ->  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  u. 
ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) )  C_  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  u.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) )
3937, 38ax-mp 5 . . . . . . . . . . . . . 14  |-  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) )  C_  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) )
40 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( fi
`  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) )  e.  _V
41 bastg 20770 . . . . . . . . . . . . . . 15  |-  ( ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) )  e.  _V  ->  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) 
C_  ( topGen `  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) ) )
4240, 41ax-mp 5 . . . . . . . . . . . . . 14  |-  ( fi
`  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) 
C_  ( topGen `  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) )
4339, 42sstri 3612 . . . . . . . . . . . . 13  |-  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) )  C_  ( topGen `  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  u.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) )
44 eqid 2622 . . . . . . . . . . . . . . 15  |-  ran  (
x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  =  ran  (
x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)
45 eqid 2622 . . . . . . . . . . . . . . 15  |-  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  =  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )
4617, 10, 44, 45ordtprsval 29964 . . . . . . . . . . . . . 14  |-  ( K  e.  Preset  ->  (ordTop `  .<_  )  =  ( topGen `  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  u.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) ) )
479, 46syl5eq 2668 . . . . . . . . . . . . 13  |-  ( K  e.  Preset  ->  J  =  (
topGen `  ( fi `  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  u. 
ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) ) ) ) )
4843, 47syl5sseqr 3654 . . . . . . . . . . . 12  |-  ( K  e.  Preset  ->  ( { B }  u.  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) ) )  C_  J )
4948unssbd 3791 . . . . . . . . . . 11  |-  ( K  e.  Preset  ->  ( ran  (
x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) )  C_  J
)
5028, 49syl 17 . . . . . . . . . 10  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  ( ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  u.  ran  (
x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) )  C_  J
)
5150unssbd 3791 . . . . . . . . 9  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  C_  J )
52 breq2 4657 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
r  .<_  z  <->  r  .<_  y ) )
5352notbid 308 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -.  r  .<_  z  <->  -.  r  .<_  y ) )
5453cbvrabv 3199 . . . . . . . . . . . 12  |-  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  r  .<_  y }
55 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( x  =  r  ->  (
x  .<_  y  <->  r  .<_  y ) )
5655notbid 308 . . . . . . . . . . . . . . 15  |-  ( x  =  r  ->  ( -.  x  .<_  y  <->  -.  r  .<_  y ) )
5756rabbidv 3189 . . . . . . . . . . . . . 14  |-  ( x  =  r  ->  { y  e.  B  |  -.  x  .<_  y }  =  { y  e.  B  |  -.  r  .<_  y } )
5857eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( x  =  r  ->  ( { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  x  .<_  y }  <->  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  r  .<_  y } ) )
5958rspcev 3309 . . . . . . . . . . . 12  |-  ( ( r  e.  B  /\  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  r  .<_  y } )  ->  E. x  e.  B  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  x  .<_  y } )
6054, 59mpan2 707 . . . . . . . . . . 11  |-  ( r  e.  B  ->  E. x  e.  B  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  x  .<_  y } )
6131rabex 4813 . . . . . . . . . . . 12  |-  { z  e.  B  |  -.  r  .<_  z }  e.  _V
62 eqid 2622 . . . . . . . . . . . . 13  |-  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  =  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )
6362elrnmpt 5372 . . . . . . . . . . . 12  |-  ( { z  e.  B  |  -.  r  .<_  z }  e.  _V  ->  ( { z  e.  B  |  -.  r  .<_  z }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  <->  E. x  e.  B  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  x  .<_  y } ) )
6461, 63ax-mp 5 . . . . . . . . . . 11  |-  ( { z  e.  B  |  -.  r  .<_  z }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } )  <->  E. x  e.  B  { z  e.  B  |  -.  r  .<_  z }  =  { y  e.  B  |  -.  x  .<_  y } )
6560, 64sylibr 224 . . . . . . . . . 10  |-  ( r  e.  B  ->  { z  e.  B  |  -.  r  .<_  z }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) )
6665adantl 482 . . . . . . . . 9  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  { z  e.  B  |  -.  r  .<_  z }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  x  .<_  y } ) )
6751, 66sseldd 3604 . . . . . . . 8  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  { z  e.  B  |  -.  r  .<_  z }  e.  J )
6867ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  { z  e.  B  |  -.  r  .<_  z }  e.  J )
6950unssad 3790 . . . . . . . . 9  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
)  C_  J )
70 breq1 4656 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
z  .<_  r  <->  y  .<_  r ) )
7170notbid 308 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -.  z  .<_  r  <->  -.  y  .<_  r ) )
7271cbvrabv 3199 . . . . . . . . . . . 12  |-  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  r }
73 breq2 4657 . . . . . . . . . . . . . . . 16  |-  ( x  =  r  ->  (
y  .<_  x  <->  y  .<_  r ) )
7473notbid 308 . . . . . . . . . . . . . . 15  |-  ( x  =  r  ->  ( -.  y  .<_  x  <->  -.  y  .<_  r ) )
7574rabbidv 3189 . . . . . . . . . . . . . 14  |-  ( x  =  r  ->  { y  e.  B  |  -.  y  .<_  x }  =  { y  e.  B  |  -.  y  .<_  r } )
7675eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( x  =  r  ->  ( { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  x }  <->  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  r } ) )
7776rspcev 3309 . . . . . . . . . . . 12  |-  ( ( r  e.  B  /\  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  r } )  ->  E. x  e.  B  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  x } )
7872, 77mpan2 707 . . . . . . . . . . 11  |-  ( r  e.  B  ->  E. x  e.  B  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  x }
)
7931rabex 4813 . . . . . . . . . . . 12  |-  { z  e.  B  |  -.  z  .<_  r }  e.  _V
80 eqid 2622 . . . . . . . . . . . . 13  |-  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  =  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )
8180elrnmpt 5372 . . . . . . . . . . . 12  |-  ( { z  e.  B  |  -.  z  .<_  r }  e.  _V  ->  ( { z  e.  B  |  -.  z  .<_  r }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  <->  E. x  e.  B  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  x } ) )
8279, 81ax-mp 5 . . . . . . . . . . 11  |-  ( { z  e.  B  |  -.  z  .<_  r }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x } )  <->  E. x  e.  B  { z  e.  B  |  -.  z  .<_  r }  =  { y  e.  B  |  -.  y  .<_  x } )
8378, 82sylibr 224 . . . . . . . . . 10  |-  ( r  e.  B  ->  { z  e.  B  |  -.  z  .<_  r }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
) )
8483adantl 482 . . . . . . . . 9  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  { z  e.  B  |  -.  z  .<_  r }  e.  ran  ( x  e.  B  |->  { y  e.  B  |  -.  y  .<_  x }
) )
8569, 84sseldd 3604 . . . . . . . 8  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  { z  e.  B  |  -.  z  .<_  r }  e.  J )
8685ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  { z  e.  B  |  -.  z  .<_  r }  e.  J )
87 simpll 790 . . . . . . . . 9  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  (
( K  e. Toset  /\  A  C_  B )  /\  r  e.  B ) )
88 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  -.  r  e.  A )
8987, 88jca 554 . . . . . . . 8  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  (
( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A ) )
90 simplrl 800 . . . . . . . 8  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  E. x  e.  A  -.  r  .<_  x )
91 ssel 3597 . . . . . . . . . . . . . . 15  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
9291ancrd 577 . . . . . . . . . . . . . 14  |-  ( A 
C_  B  ->  (
x  e.  A  -> 
( x  e.  B  /\  x  e.  A
) ) )
9392anim1d 588 . . . . . . . . . . . . 13  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  -.  r  .<_  x )  ->  ( ( x  e.  B  /\  x  e.  A )  /\  -.  r  .<_  x ) ) )
9493impl 650 . . . . . . . . . . . 12  |-  ( ( ( A  C_  B  /\  x  e.  A
)  /\  -.  r  .<_  x )  ->  (
( x  e.  B  /\  x  e.  A
)  /\  -.  r  .<_  x ) )
95 elin 3796 . . . . . . . . . . . . 13  |-  ( x  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  <->  ( x  e. 
{ z  e.  B  |  -.  r  .<_  z }  /\  x  e.  A
) )
96 breq2 4657 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  (
r  .<_  z  <->  r  .<_  x ) )
9796notbid 308 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( -.  r  .<_  z  <->  -.  r  .<_  x ) )
9897elrab 3363 . . . . . . . . . . . . . 14  |-  ( x  e.  { z  e.  B  |  -.  r  .<_  z }  <->  ( x  e.  B  /\  -.  r  .<_  x ) )
9998anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( x  e.  { z  e.  B  |  -.  r  .<_  z }  /\  x  e.  A )  <->  ( ( x  e.  B  /\  -.  r  .<_  x )  /\  x  e.  A
) )
100 an32 839 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  B  /\  -.  r  .<_  x )  /\  x  e.  A
)  <->  ( ( x  e.  B  /\  x  e.  A )  /\  -.  r  .<_  x ) )
10195, 99, 1003bitri 286 . . . . . . . . . . . 12  |-  ( x  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  <->  ( ( x  e.  B  /\  x  e.  A )  /\  -.  r  .<_  x ) )
10294, 101sylibr 224 . . . . . . . . . . 11  |-  ( ( ( A  C_  B  /\  x  e.  A
)  /\  -.  r  .<_  x )  ->  x  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A
) )
103 ne0i 3921 . . . . . . . . . . 11  |-  ( x  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  ->  ( {
z  e.  B  |  -.  r  .<_  z }  i^i  A )  =/=  (/) )
104102, 103syl 17 . . . . . . . . . 10  |-  ( ( ( A  C_  B  /\  x  e.  A
)  /\  -.  r  .<_  x )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  =/=  (/) )
10525, 104sylanl1 682 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  /\  -.  r  .<_  x )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  =/=  (/) )
106105r19.29an 3077 . . . . . . . 8  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  E. x  e.  A  -.  r  .<_  x )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  =/=  (/) )
10789, 90, 106syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  A )  =/=  (/) )
108 simplrr 801 . . . . . . . 8  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  E. y  e.  A  -.  y  .<_  r )
109 ssel 3597 . . . . . . . . . . . . . . 15  |-  ( A 
C_  B  ->  (
y  e.  A  -> 
y  e.  B ) )
110109ancrd 577 . . . . . . . . . . . . . 14  |-  ( A 
C_  B  ->  (
y  e.  A  -> 
( y  e.  B  /\  y  e.  A
) ) )
111110anim1d 588 . . . . . . . . . . . . 13  |-  ( A 
C_  B  ->  (
( y  e.  A  /\  -.  y  .<_  r )  ->  ( ( y  e.  B  /\  y  e.  A )  /\  -.  y  .<_  r ) ) )
112111impl 650 . . . . . . . . . . . 12  |-  ( ( ( A  C_  B  /\  y  e.  A
)  /\  -.  y  .<_  r )  ->  (
( y  e.  B  /\  y  e.  A
)  /\  -.  y  .<_  r ) )
113 elin 3796 . . . . . . . . . . . . 13  |-  ( y  e.  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  <->  ( y  e. 
{ z  e.  B  |  -.  z  .<_  r }  /\  y  e.  A
) )
11471elrab 3363 . . . . . . . . . . . . . 14  |-  ( y  e.  { z  e.  B  |  -.  z  .<_  r }  <->  ( y  e.  B  /\  -.  y  .<_  r ) )
115114anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( y  e.  { z  e.  B  |  -.  z  .<_  r }  /\  y  e.  A )  <->  ( ( y  e.  B  /\  -.  y  .<_  r )  /\  y  e.  A
) )
116 an32 839 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  -.  y  .<_  r )  /\  y  e.  A
)  <->  ( ( y  e.  B  /\  y  e.  A )  /\  -.  y  .<_  r ) )
117113, 115, 1163bitri 286 . . . . . . . . . . . 12  |-  ( y  e.  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  <->  ( ( y  e.  B  /\  y  e.  A )  /\  -.  y  .<_  r ) )
118112, 117sylibr 224 . . . . . . . . . . 11  |-  ( ( ( A  C_  B  /\  y  e.  A
)  /\  -.  y  .<_  r )  ->  y  e.  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A
) )
119 ne0i 3921 . . . . . . . . . . 11  |-  ( y  e.  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  ->  ( {
z  e.  B  |  -.  z  .<_  r }  i^i  A )  =/=  (/) )
120118, 119syl 17 . . . . . . . . . 10  |-  ( ( ( A  C_  B  /\  y  e.  A
)  /\  -.  y  .<_  r )  ->  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  =/=  (/) )
12125, 120sylanl1 682 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  /\  -.  y  .<_  r )  ->  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  =/=  (/) )
122121r19.29an 3077 . . . . . . . 8  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  E. y  e.  A  -.  y  .<_  r )  ->  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  =/=  (/) )
12389, 108, 122syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  ( { z  e.  B  |  -.  z  .<_  r }  i^i  A )  =/=  (/) )
12417, 10trleile 29666 . . . . . . . . . . . . . . . 16  |-  ( ( K  e. Toset  /\  r  e.  B  /\  z  e.  B )  ->  (
r  .<_  z  \/  z  .<_  r ) )
125 oran 517 . . . . . . . . . . . . . . . 16  |-  ( ( r  .<_  z  \/  z  .<_  r )  <->  -.  ( -.  r  .<_  z  /\  -.  z  .<_  r ) )
126124, 125sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( K  e. Toset  /\  r  e.  B  /\  z  e.  B )  ->  -.  ( -.  r  .<_  z  /\  -.  z  .<_  r ) )
1271263expa 1265 . . . . . . . . . . . . . 14  |-  ( ( ( K  e. Toset  /\  r  e.  B )  /\  z  e.  B )  ->  -.  ( -.  r  .<_  z  /\  -.  z  .<_  r ) )
128127nrexdv 3001 . . . . . . . . . . . . 13  |-  ( ( K  e. Toset  /\  r  e.  B )  ->  -.  E. z  e.  B  ( -.  r  .<_  z  /\  -.  z  .<_  r ) )
129 rabid 3116 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { z  e.  B  |  -.  r  .<_  z }  <->  ( z  e.  B  /\  -.  r  .<_  z ) )
130 rabid 3116 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { z  e.  B  |  -.  z  .<_  r }  <->  ( z  e.  B  /\  -.  z  .<_  r ) )
131129, 130anbi12i 733 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  { z  e.  B  |  -.  r  .<_  z }  /\  z  e.  { z  e.  B  |  -.  z  .<_  r } )  <-> 
( ( z  e.  B  /\  -.  r  .<_  z )  /\  (
z  e.  B  /\  -.  z  .<_  r ) ) )
132 elin 3796 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  <->  ( z  e. 
{ z  e.  B  |  -.  r  .<_  z }  /\  z  e.  {
z  e.  B  |  -.  z  .<_  r } ) )
133 anandi 871 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  B  /\  ( -.  r  .<_  z  /\  -.  z  .<_  r ) )  <->  ( (
z  e.  B  /\  -.  r  .<_  z )  /\  ( z  e.  B  /\  -.  z  .<_  r ) ) )
134131, 132, 1333bitr4i 292 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  <->  ( z  e.  B  /\  ( -.  r  .<_  z  /\  -.  z  .<_  r ) ) )
135134exbii 1774 . . . . . . . . . . . . . . 15  |-  ( E. z  z  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  <->  E. z
( z  e.  B  /\  ( -.  r  .<_  z  /\  -.  z  .<_  r ) ) )
136 nfrab1 3122 . . . . . . . . . . . . . . . . 17  |-  F/_ z { z  e.  B  |  -.  r  .<_  z }
137 nfrab1 3122 . . . . . . . . . . . . . . . . 17  |-  F/_ z { z  e.  B  |  -.  z  .<_  r }
138136, 137nfin 3820 . . . . . . . . . . . . . . . 16  |-  F/_ z
( { z  e.  B  |  -.  r  .<_  z }  i^i  {
z  e.  B  |  -.  z  .<_  r } )
139138n0f 3927 . . . . . . . . . . . . . . 15  |-  ( ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  =/=  (/) 
<->  E. z  z  e.  ( { z  e.  B  |  -.  r  .<_  z }  i^i  {
z  e.  B  |  -.  z  .<_  r } ) )
140 df-rex 2918 . . . . . . . . . . . . . . 15  |-  ( E. z  e.  B  ( -.  r  .<_  z  /\  -.  z  .<_  r )  <->  E. z ( z  e.  B  /\  ( -.  r  .<_  z  /\  -.  z  .<_  r ) ) )
141135, 139, 1403bitr4i 292 . . . . . . . . . . . . . 14  |-  ( ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  =/=  (/) 
<->  E. z  e.  B  ( -.  r  .<_  z  /\  -.  z  .<_  r ) )
142141necon1bbii 2843 . . . . . . . . . . . . 13  |-  ( -. 
E. z  e.  B  ( -.  r  .<_  z  /\  -.  z  .<_  r )  <->  ( {
z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  =  (/) )
143128, 142sylib 208 . . . . . . . . . . . 12  |-  ( ( K  e. Toset  /\  r  e.  B )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  =  (/) )
144143adantlr 751 . . . . . . . . . . 11  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  =  (/) )
145144adantr 481 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  ( { z  e.  B  |  -.  r  .<_  z }  i^i  { z  e.  B  |  -.  z  .<_  r } )  =  (/) )
146145ineq1d 3813 . . . . . . . . 9  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  (
( { z  e.  B  |  -.  r  .<_  z }  i^i  {
z  e.  B  |  -.  z  .<_  r } )  i^i  A )  =  ( (/)  i^i  A
) )
147 0in 3969 . . . . . . . . 9  |-  ( (/)  i^i 
A )  =  (/)
148146, 147syl6eq 2672 . . . . . . . 8  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  (
( { z  e.  B  |  -.  r  .<_  z }  i^i  {
z  e.  B  |  -.  z  .<_  r } )  i^i  A )  =  (/) )
149148adantlr 751 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  (
( { z  e.  B  |  -.  r  .<_  z }  i^i  {
z  e.  B  |  -.  z  .<_  r } )  i^i  A )  =  (/) )
150 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  r  e.  B )
151 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  -.  r  e.  A )
152 vex 3203 . . . . . . . . . . . . . . 15  |-  r  e. 
_V
153152snss 4316 . . . . . . . . . . . . . 14  |-  ( r  e.  B  <->  { r }  C_  B )
154 eldif 3584 . . . . . . . . . . . . . . . 16  |-  ( r  e.  ( B  \  A )  <->  ( r  e.  B  /\  -.  r  e.  A ) )
155152snss 4316 . . . . . . . . . . . . . . . 16  |-  ( r  e.  ( B  \  A )  <->  { r }  C_  ( B  \  A ) )
156154, 155bitr3i 266 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  B  /\  -.  r  e.  A
)  <->  { r }  C_  ( B  \  A ) )
157 ssconb 3743 . . . . . . . . . . . . . . 15  |-  ( ( { r }  C_  B  /\  A  C_  B
)  ->  ( {
r }  C_  ( B  \  A )  <->  A  C_  ( B  \  { r } ) ) )
158156, 157syl5bb 272 . . . . . . . . . . . . . 14  |-  ( ( { r }  C_  B  /\  A  C_  B
)  ->  ( (
r  e.  B  /\  -.  r  e.  A
)  <->  A  C_  ( B 
\  { r } ) ) )
159153, 158sylanb 489 . . . . . . . . . . . . 13  |-  ( ( r  e.  B  /\  A  C_  B )  -> 
( ( r  e.  B  /\  -.  r  e.  A )  <->  A  C_  ( B  \  { r } ) ) )
160159adantl 482 . . . . . . . . . . . 12  |-  ( ( K  e. Toset  /\  (
r  e.  B  /\  A  C_  B ) )  ->  ( ( r  e.  B  /\  -.  r  e.  A )  <->  A 
C_  ( B  \  { r } ) ) )
161160anass1rs 849 . . . . . . . . . . 11  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  (
( r  e.  B  /\  -.  r  e.  A
)  <->  A  C_  ( B 
\  { r } ) ) )
162161adantr 481 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  (
( r  e.  B  /\  -.  r  e.  A
)  <->  A  C_  ( B 
\  { r } ) ) )
163150, 151, 162mpbi2and 956 . . . . . . . . 9  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  A  C_  ( B  \  {
r } ) )
1647ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  K  e.  Poset )
165 nfv 1843 . . . . . . . . . . 11  |-  F/ z ( K  e.  Poset  /\  r  e.  B )
166136, 137nfun 3769 . . . . . . . . . . 11  |-  F/_ z
( { z  e.  B  |  -.  r  .<_  z }  u.  {
z  e.  B  |  -.  z  .<_  r } )
167 nfcv 2764 . . . . . . . . . . 11  |-  F/_ z
( B  \  {
r } )
168 ianor 509 . . . . . . . . . . . . . . 15  |-  ( -.  ( r  .<_  z  /\  z  .<_  r )  <->  ( -.  r  .<_  z  \/  -.  z  .<_  r ) )
16917, 10posrasymb 29657 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Poset  /\  r  e.  B  /\  z  e.  B )  ->  (
( r  .<_  z  /\  z  .<_  r )  <->  r  =  z ) )
170 equcom 1945 . . . . . . . . . . . . . . . . 17  |-  ( r  =  z  <->  z  =  r )
171169, 170syl6bb 276 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Poset  /\  r  e.  B  /\  z  e.  B )  ->  (
( r  .<_  z  /\  z  .<_  r )  <->  z  =  r ) )
172171necon3bbid 2831 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Poset  /\  r  e.  B  /\  z  e.  B )  ->  ( -.  ( r  .<_  z  /\  z  .<_  r )  <->  z  =/=  r ) )
173168, 172syl5bbr 274 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Poset  /\  r  e.  B  /\  z  e.  B )  ->  (
( -.  r  .<_  z  \/  -.  z  .<_  r )  <->  z  =/=  r ) )
1741733expia 1267 . . . . . . . . . . . . 13  |-  ( ( K  e.  Poset  /\  r  e.  B )  ->  (
z  e.  B  -> 
( ( -.  r  .<_  z  \/  -.  z  .<_  r )  <->  z  =/=  r ) ) )
175174pm5.32d 671 . . . . . . . . . . . 12  |-  ( ( K  e.  Poset  /\  r  e.  B )  ->  (
( z  e.  B  /\  ( -.  r  .<_  z  \/  -.  z  .<_  r ) )  <->  ( z  e.  B  /\  z  =/=  r ) ) )
176129, 130orbi12i 543 . . . . . . . . . . . . 13  |-  ( ( z  e.  { z  e.  B  |  -.  r  .<_  z }  \/  z  e.  { z  e.  B  |  -.  z  .<_  r } )  <-> 
( ( z  e.  B  /\  -.  r  .<_  z )  \/  (
z  e.  B  /\  -.  z  .<_  r ) ) )
177 elun 3753 . . . . . . . . . . . . 13  |-  ( z  e.  ( { z  e.  B  |  -.  r  .<_  z }  u.  { z  e.  B  |  -.  z  .<_  r } )  <->  ( z  e. 
{ z  e.  B  |  -.  r  .<_  z }  \/  z  e.  {
z  e.  B  |  -.  z  .<_  r } ) )
178 andi 911 . . . . . . . . . . . . 13  |-  ( ( z  e.  B  /\  ( -.  r  .<_  z  \/  -.  z  .<_  r ) )  <->  ( (
z  e.  B  /\  -.  r  .<_  z )  \/  ( z  e.  B  /\  -.  z  .<_  r ) ) )
179176, 177, 1783bitr4ri 293 . . . . . . . . . . . 12  |-  ( ( z  e.  B  /\  ( -.  r  .<_  z  \/  -.  z  .<_  r ) )  <->  z  e.  ( { z  e.  B  |  -.  r  .<_  z }  u.  { z  e.  B  |  -.  z  .<_  r } ) )
180 eldifsn 4317 . . . . . . . . . . . . 13  |-  ( z  e.  ( B  \  { r } )  <-> 
( z  e.  B  /\  z  =/=  r
) )
181180bicomi 214 . . . . . . . . . . . 12  |-  ( ( z  e.  B  /\  z  =/=  r )  <->  z  e.  ( B  \  { r } ) )
182175, 179, 1813bitr3g 302 . . . . . . . . . . 11  |-  ( ( K  e.  Poset  /\  r  e.  B )  ->  (
z  e.  ( { z  e.  B  |  -.  r  .<_  z }  u.  { z  e.  B  |  -.  z  .<_  r } )  <->  z  e.  ( B  \  { r } ) ) )
183165, 166, 167, 182eqrd 3622 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  r  e.  B )  ->  ( { z  e.  B  |  -.  r  .<_  z }  u.  { z  e.  B  |  -.  z  .<_  r } )  =  ( B  \  {
r } ) )
184164, 150, 183syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  ( { z  e.  B  |  -.  r  .<_  z }  u.  { z  e.  B  |  -.  z  .<_  r } )  =  ( B  \  {
r } ) )
185163, 184sseqtr4d 3642 . . . . . . . 8  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  A  C_  ( { z  e.  B  |  -.  r  .<_  z }  u.  {
z  e.  B  |  -.  z  .<_  r } ) )
186185adantlr 751 . . . . . . 7  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  A  C_  ( { z  e.  B  |  -.  r  .<_  z }  u.  {
z  e.  B  |  -.  z  .<_  r } ) )
18724, 26, 68, 86, 107, 123, 149, 186nconnsubb 21226 . . . . . 6  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) )  /\  -.  r  e.  A )  ->  -.  ( Jt  A )  e. Conn )
188187anasss 679 . . . . 5  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  ( ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r )  /\  -.  r  e.  A
) )  ->  -.  ( Jt  A )  e. Conn )
189188adantllr 755 . . . 4  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( (
x  .<_  r  /\  r  .<_  y )  ->  r  e.  A ) )  /\  r  e.  B )  /\  ( ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r )  /\  -.  r  e.  A )
)  ->  -.  ( Jt  A )  e. Conn )
190 rexanali 2998 . . . . . . . . . . 11  |-  ( E. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  -.  A. r  e.  B  ( (
x  .<_  r  /\  r  .<_  y )  ->  r  e.  A ) )
191190rexbii 3041 . . . . . . . . . 10  |-  ( E. y  e.  A  E. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  E. y  e.  A  -.  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
) )
192 rexcom 3099 . . . . . . . . . 10  |-  ( E. y  e.  A  E. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  E. r  e.  B  E. y  e.  A  ( ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A ) )
193 rexnal 2995 . . . . . . . . . 10  |-  ( E. y  e.  A  -.  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  -> 
r  e.  A )  <->  -.  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
) )
194191, 192, 1933bitr3i 290 . . . . . . . . 9  |-  ( E. r  e.  B  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  -.  A. y  e.  A  A. r  e.  B  ( (
x  .<_  r  /\  r  .<_  y )  ->  r  e.  A ) )
195194rexbii 3041 . . . . . . . 8  |-  ( E. x  e.  A  E. r  e.  B  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  E. x  e.  A  -.  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
) )
196 rexcom 3099 . . . . . . . 8  |-  ( E. x  e.  A  E. r  e.  B  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  E. r  e.  B  E. x  e.  A  E. y  e.  A  ( ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A ) )
197 rexnal 2995 . . . . . . . 8  |-  ( E. x  e.  A  -.  A. y  e.  A  A. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  -> 
r  e.  A )  <->  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
) )
198195, 196, 1973bitr3i 290 . . . . . . 7  |-  ( E. r  e.  B  E. x  e.  A  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( (
x  .<_  r  /\  r  .<_  y )  ->  r  e.  A ) )
199 r19.41v 3089 . . . . . . . . . 10  |-  ( E. y  e.  A  ( ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  ( E. y  e.  A  ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A )
)
200199rexbii 3041 . . . . . . . . 9  |-  ( E. x  e.  A  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  E. x  e.  A  ( E. y  e.  A  ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
) )
201 r19.41v 3089 . . . . . . . . 9  |-  ( E. x  e.  A  ( E. y  e.  A  ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  ( E. x  e.  A  E. y  e.  A  ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A )
)
202 reeanv 3107 . . . . . . . . . 10  |-  ( E. x  e.  A  E. y  e.  A  (
x  .<_  r  /\  r  .<_  y )  <->  ( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r  .<_  y ) )
203202anbi1i 731 . . . . . . . . 9  |-  ( ( E. x  e.  A  E. y  e.  A  ( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  ( ( E. x  e.  A  x 
.<_  r  /\  E. y  e.  A  r  .<_  y )  /\  -.  r  e.  A ) )
204200, 201, 2033bitri 286 . . . . . . . 8  |-  ( E. x  e.  A  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  ( ( E. x  e.  A  x 
.<_  r  /\  E. y  e.  A  r  .<_  y )  /\  -.  r  e.  A ) )
205204rexbii 3041 . . . . . . 7  |-  ( E. r  e.  B  E. x  e.  A  E. y  e.  A  (
( x  .<_  r  /\  r  .<_  y )  /\  -.  r  e.  A
)  <->  E. r  e.  B  ( ( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r  .<_  y )  /\  -.  r  e.  A ) )
206198, 205bitr3i 266 . . . . . 6  |-  ( -. 
A. x  e.  A  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
)  <->  E. r  e.  B  ( ( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r  .<_  y )  /\  -.  r  e.  A ) )
20727ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  K  e. Toset )
20825sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  x  e.  B )
209 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  r  e.  B )
21017, 10trleile 29666 . . . . . . . . . . . . . 14  |-  ( ( K  e. Toset  /\  x  e.  B  /\  r  e.  B )  ->  (
x  .<_  r  \/  r  .<_  x ) )
211207, 208, 209, 210syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  ( x  .<_  r  \/  r  .<_  x ) )
212 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  x  e.  A )
213 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  -.  r  e.  A )
214 nelne2 2891 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  -.  r  e.  A
)  ->  x  =/=  r )
215212, 213, 214syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  x  =/=  r )
216164adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  K  e.  Poset
)
21717, 10posrasymb 29657 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Poset  /\  x  e.  B  /\  r  e.  B )  ->  (
( x  .<_  r  /\  r  .<_  x )  <->  x  =  r ) )
218217necon3bbid 2831 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Poset  /\  x  e.  B  /\  r  e.  B )  ->  ( -.  ( x  .<_  r  /\  r  .<_  x )  <->  x  =/=  r ) )
219216, 208, 209, 218syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  ( -.  ( x  .<_  r  /\  r  .<_  x )  <->  x  =/=  r ) )
220215, 219mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  -.  (
x  .<_  r  /\  r  .<_  x ) )
221211, 220jca 554 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  ( (
x  .<_  r  \/  r  .<_  x )  /\  -.  ( x  .<_  r  /\  r  .<_  x ) ) )
222 pm5.17 932 . . . . . . . . . . . 12  |-  ( ( ( x  .<_  r  \/  r  .<_  x )  /\  -.  ( x  .<_  r  /\  r  .<_  x ) )  <->  ( x  .<_  r  <->  -.  r  .<_  x ) )
223221, 222sylib 208 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  x  e.  A
)  ->  ( x  .<_  r  <->  -.  r  .<_  x ) )
224223rexbidva 3049 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  ( E. x  e.  A  x  .<_  r  <->  E. x  e.  A  -.  r  .<_  x ) )
22527ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  K  e. Toset )
226 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  r  e.  B )
22725sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  y  e.  B )
22817, 10trleile 29666 . . . . . . . . . . . . . 14  |-  ( ( K  e. Toset  /\  r  e.  B  /\  y  e.  B )  ->  (
r  .<_  y  \/  y  .<_  r ) )
229225, 226, 227, 228syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  ( r  .<_  y  \/  y  .<_  r ) )
230 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
231 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  -.  r  e.  A )
232 nelne2 2891 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  /\  -.  r  e.  A
)  ->  y  =/=  r )
233230, 231, 232syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  y  =/=  r )
234233necomd 2849 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  r  =/=  y )
235164adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  K  e.  Poset
)
23617, 10posrasymb 29657 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Poset  /\  r  e.  B  /\  y  e.  B )  ->  (
( r  .<_  y  /\  y  .<_  r )  <->  r  =  y ) )
237236necon3bbid 2831 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Poset  /\  r  e.  B  /\  y  e.  B )  ->  ( -.  ( r  .<_  y  /\  y  .<_  r )  <->  r  =/=  y ) )
238235, 226, 227, 237syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  ( -.  ( r  .<_  y  /\  y  .<_  r )  <->  r  =/=  y ) )
239234, 238mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  -.  (
r  .<_  y  /\  y  .<_  r ) )
240229, 239jca 554 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  ( (
r  .<_  y  \/  y  .<_  r )  /\  -.  ( r  .<_  y  /\  y  .<_  r ) ) )
241 pm5.17 932 . . . . . . . . . . . 12  |-  ( ( ( r  .<_  y  \/  y  .<_  r )  /\  -.  ( r  .<_  y  /\  y  .<_  r ) )  <->  ( r  .<_  y 
<->  -.  y  .<_  r ) )
242240, 241sylib 208 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e. Toset  /\  A  C_  B
)  /\  r  e.  B )  /\  -.  r  e.  A )  /\  y  e.  A
)  ->  ( r  .<_  y  <->  -.  y  .<_  r ) )
243242rexbidva 3049 . . . . . . . . . 10  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  ( E. y  e.  A  r  .<_  y  <->  E. y  e.  A  -.  y  .<_  r ) )
244224, 243anbi12d 747 . . . . . . . . 9  |-  ( ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B
)  /\  -.  r  e.  A )  ->  (
( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r 
.<_  y )  <->  ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) ) )
245244ex 450 . . . . . . . 8  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  ( -.  r  e.  A  ->  ( ( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r  .<_  y )  <-> 
( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r ) ) ) )
246245pm5.32rd 672 . . . . . . 7  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  r  e.  B )  ->  (
( ( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r  .<_  y )  /\  -.  r  e.  A )  <->  ( ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r )  /\  -.  r  e.  A
) ) )
247246rexbidva 3049 . . . . . 6  |-  ( ( K  e. Toset  /\  A  C_  B )  ->  ( E. r  e.  B  ( ( E. x  e.  A  x  .<_  r  /\  E. y  e.  A  r  .<_  y )  /\  -.  r  e.  A )  <->  E. r  e.  B  ( ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r )  /\  -.  r  e.  A
) ) )
248206, 247syl5bb 272 . . . . 5  |-  ( ( K  e. Toset  /\  A  C_  B )  ->  ( -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
)  <->  E. r  e.  B  ( ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r )  /\  -.  r  e.  A )
) )
249248biimpa 501 . . . 4  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  -> 
r  e.  A ) )  ->  E. r  e.  B  ( ( E. x  e.  A  -.  r  .<_  x  /\  E. y  e.  A  -.  y  .<_  r )  /\  -.  r  e.  A
) )
2506, 189, 249r19.29af 3076 . . 3  |-  ( ( ( K  e. Toset  /\  A  C_  B )  /\  -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  -> 
r  e.  A ) )  ->  -.  ( Jt  A )  e. Conn )
251250ex 450 . 2  |-  ( ( K  e. Toset  /\  A  C_  B )  ->  ( -.  A. x  e.  A  A. y  e.  A  A. r  e.  B  ( ( x  .<_  r  /\  r  .<_  y )  ->  r  e.  A
)  ->  -.  ( Jt  A )  e. Conn )
)
252251con4d 114 1  |-  ( ( K  e. Toset  /\  A  C_  B )  ->  (
( Jt  A )  e. Conn  ->  A. x  e.  A  A. y  e.  A  A. r  e.  B  (
( x  .<_  r  /\  r  .<_  y )  -> 
r  e.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650   ficfi 8316   Basecbs 15857   lecple 15948   ↾t crest 16081   topGenctg 16098  ordTopcordt 16159    Preset cpreset 16926   Posetcpo 16940  Tosetctos 17033  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-ordt 16161  df-preset 16928  df-poset 16946  df-toset 17034  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator