Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3 Structured version   Visualization version   Unicode version

Theorem dford3 37595
Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3  |-  ( Ord 
N  <->  ( Tr  N  /\  A. x  e.  N  Tr  x ) )
Distinct variable group:    x, N

Proof of Theorem dford3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtr 5737 . . 3  |-  ( Ord 
N  ->  Tr  N
)
2 ordelord 5745 . . . . 5  |-  ( ( Ord  N  /\  x  e.  N )  ->  Ord  x )
3 ordtr 5737 . . . . 5  |-  ( Ord  x  ->  Tr  x
)
42, 3syl 17 . . . 4  |-  ( ( Ord  N  /\  x  e.  N )  ->  Tr  x )
54ralrimiva 2966 . . 3  |-  ( Ord 
N  ->  A. x  e.  N  Tr  x
)
61, 5jca 554 . 2  |-  ( Ord 
N  ->  ( Tr  N  /\  A. x  e.  N  Tr  x ) )
7 simpl 473 . . 3  |-  ( ( Tr  N  /\  A. x  e.  N  Tr  x )  ->  Tr  N )
8 dford3lem1 37593 . . . . 5  |-  ( ( Tr  N  /\  A. x  e.  N  Tr  x )  ->  A. a  e.  N  ( Tr  a  /\  A. x  e.  a  Tr  x ) )
9 dford3lem2 37594 . . . . . 6  |-  ( ( Tr  a  /\  A. x  e.  a  Tr  x )  ->  a  e.  On )
109ralimi 2952 . . . . 5  |-  ( A. a  e.  N  ( Tr  a  /\  A. x  e.  a  Tr  x
)  ->  A. a  e.  N  a  e.  On )
118, 10syl 17 . . . 4  |-  ( ( Tr  N  /\  A. x  e.  N  Tr  x )  ->  A. a  e.  N  a  e.  On )
12 dfss3 3592 . . . 4  |-  ( N 
C_  On  <->  A. a  e.  N  a  e.  On )
1311, 12sylibr 224 . . 3  |-  ( ( Tr  N  /\  A. x  e.  N  Tr  x )  ->  N  C_  On )
14 ordon 6982 . . . 4  |-  Ord  On
1514a1i 11 . . 3  |-  ( ( Tr  N  /\  A. x  e.  N  Tr  x )  ->  Ord  On )
16 trssord 5740 . . 3  |-  ( ( Tr  N  /\  N  C_  On  /\  Ord  On )  ->  Ord  N )
177, 13, 15, 16syl3anc 1326 . 2  |-  ( ( Tr  N  /\  A. x  e.  N  Tr  x )  ->  Ord  N )
186, 17impbii 199 1  |-  ( Ord 
N  <->  ( Tr  N  /\  A. x  e.  N  Tr  x ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912    C_ wss 3574   Tr wtr 4752   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  dford4  37596
  Copyright terms: Public domain W3C validator