| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ondomon | Structured version Visualization version Unicode version | ||
| Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 8449. (Contributed by NM, 7-Nov-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ondomon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon 5748 |
. . . . . . . . . . . 12
| |
| 2 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 3 | onelss 5766 |
. . . . . . . . . . . . . 14
| |
| 4 | 3 | imp 445 |
. . . . . . . . . . . . 13
|
| 5 | ssdomg 8001 |
. . . . . . . . . . . . 13
| |
| 6 | 2, 4, 5 | mpsyl 68 |
. . . . . . . . . . . 12
|
| 7 | 1, 6 | jca 554 |
. . . . . . . . . . 11
|
| 8 | domtr 8009 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | anim2i 593 |
. . . . . . . . . . . 12
|
| 10 | 9 | anassrs 680 |
. . . . . . . . . . 11
|
| 11 | 7, 10 | sylan 488 |
. . . . . . . . . 10
|
| 12 | 11 | exp31 630 |
. . . . . . . . 9
|
| 13 | 12 | com12 32 |
. . . . . . . 8
|
| 14 | 13 | impd 447 |
. . . . . . 7
|
| 15 | breq1 4656 |
. . . . . . . 8
| |
| 16 | 15 | elrab 3363 |
. . . . . . 7
|
| 17 | breq1 4656 |
. . . . . . . 8
| |
| 18 | 17 | elrab 3363 |
. . . . . . 7
|
| 19 | 14, 16, 18 | 3imtr4g 285 |
. . . . . 6
|
| 20 | 19 | imp 445 |
. . . . 5
|
| 21 | 20 | gen2 1723 |
. . . 4
|
| 22 | dftr2 4754 |
. . . 4
| |
| 23 | 21, 22 | mpbir 221 |
. . 3
|
| 24 | ssrab2 3687 |
. . 3
| |
| 25 | ordon 6982 |
. . 3
| |
| 26 | trssord 5740 |
. . 3
| |
| 27 | 23, 24, 25, 26 | mp3an 1424 |
. 2
|
| 28 | elex 3212 |
. . . . . 6
| |
| 29 | canth2g 8114 |
. . . . . . . . 9
| |
| 30 | domsdomtr 8095 |
. . . . . . . . 9
| |
| 31 | 29, 30 | sylan2 491 |
. . . . . . . 8
|
| 32 | 31 | expcom 451 |
. . . . . . 7
|
| 33 | 32 | ralrimivw 2967 |
. . . . . 6
|
| 34 | 28, 33 | syl 17 |
. . . . 5
|
| 35 | ss2rab 3678 |
. . . . 5
| |
| 36 | 34, 35 | sylibr 224 |
. . . 4
|
| 37 | pwexg 4850 |
. . . . . 6
| |
| 38 | numth3 9292 |
. . . . . 6
| |
| 39 | cardval2 8817 |
. . . . . 6
| |
| 40 | 37, 38, 39 | 3syl 18 |
. . . . 5
|
| 41 | fvex 6201 |
. . . . 5
| |
| 42 | 40, 41 | syl6eqelr 2710 |
. . . 4
|
| 43 | ssexg 4804 |
. . . 4
| |
| 44 | 36, 42, 43 | syl2anc 693 |
. . 3
|
| 45 | elong 5731 |
. . 3
| |
| 46 | 44, 45 | syl 17 |
. 2
|
| 47 | 27, 46 | mpbiri 248 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-wrecs 7407 df-recs 7468 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-card 8765 df-ac 8939 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |