Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3lem2 Structured version   Visualization version   Unicode version

Theorem dford3lem2 37594
Description: Lemma for dford3 37595. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3lem2  |-  ( ( Tr  x  /\  A. y  e.  x  Tr  y )  ->  x  e.  On )
Distinct variable group:    x, y

Proof of Theorem dford3lem2
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suctr 5808 . . . 4  |-  ( Tr  x  ->  Tr  suc  x
)
2 vex 3203 . . . . 5  |-  x  e. 
_V
32sucid 5804 . . . 4  |-  x  e. 
suc  x
42sucex 7011 . . . . 5  |-  suc  x  e.  _V
5 treq 4758 . . . . . 6  |-  ( c  =  suc  x  -> 
( Tr  c  <->  Tr  suc  x
) )
6 eleq2 2690 . . . . . 6  |-  ( c  =  suc  x  -> 
( x  e.  c  <-> 
x  e.  suc  x
) )
75, 6anbi12d 747 . . . . 5  |-  ( c  =  suc  x  -> 
( ( Tr  c  /\  x  e.  c
)  <->  ( Tr  suc  x  /\  x  e.  suc  x ) ) )
84, 7spcev 3300 . . . 4  |-  ( ( Tr  suc  x  /\  x  e.  suc  x )  ->  E. c ( Tr  c  /\  x  e.  c ) )
91, 3, 8sylancl 694 . . 3  |-  ( Tr  x  ->  E. c
( Tr  c  /\  x  e.  c )
)
109adantr 481 . 2  |-  ( ( Tr  x  /\  A. y  e.  x  Tr  y )  ->  E. c
( Tr  c  /\  x  e.  c )
)
11 simprl 794 . . . . . 6  |-  ( ( A. b  e.  a  ( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On )  /\  ( Tr  a  /\  A. y  e.  a  Tr  y ) )  ->  Tr  a )
12 dford3lem1 37593 . . . . . . . . 9  |-  ( ( Tr  a  /\  A. y  e.  a  Tr  y )  ->  A. b  e.  a  ( Tr  b  /\  A. y  e.  b  Tr  y ) )
13 ralim 2948 . . . . . . . . 9  |-  ( A. b  e.  a  (
( Tr  b  /\  A. y  e.  b  Tr  y )  ->  b  e.  On )  ->  ( A. b  e.  a 
( Tr  b  /\  A. y  e.  b  Tr  y )  ->  A. b  e.  a  b  e.  On ) )
1412, 13syl5 34 . . . . . . . 8  |-  ( A. b  e.  a  (
( Tr  b  /\  A. y  e.  b  Tr  y )  ->  b  e.  On )  ->  (
( Tr  a  /\  A. y  e.  a  Tr  y )  ->  A. b  e.  a  b  e.  On ) )
1514imp 445 . . . . . . 7  |-  ( ( A. b  e.  a  ( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On )  /\  ( Tr  a  /\  A. y  e.  a  Tr  y ) )  ->  A. b  e.  a  b  e.  On )
16 dfss3 3592 . . . . . . 7  |-  ( a 
C_  On  <->  A. b  e.  a  b  e.  On )
1715, 16sylibr 224 . . . . . 6  |-  ( ( A. b  e.  a  ( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On )  /\  ( Tr  a  /\  A. y  e.  a  Tr  y ) )  ->  a  C_  On )
18 ordon 6982 . . . . . . 7  |-  Ord  On
1918a1i 11 . . . . . 6  |-  ( ( A. b  e.  a  ( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On )  /\  ( Tr  a  /\  A. y  e.  a  Tr  y ) )  ->  Ord  On )
20 trssord 5740 . . . . . 6  |-  ( ( Tr  a  /\  a  C_  On  /\  Ord  On )  ->  Ord  a )
2111, 17, 19, 20syl3anc 1326 . . . . 5  |-  ( ( A. b  e.  a  ( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On )  /\  ( Tr  a  /\  A. y  e.  a  Tr  y ) )  ->  Ord  a )
22 vex 3203 . . . . . 6  |-  a  e. 
_V
2322elon 5732 . . . . 5  |-  ( a  e.  On  <->  Ord  a )
2421, 23sylibr 224 . . . 4  |-  ( ( A. b  e.  a  ( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On )  /\  ( Tr  a  /\  A. y  e.  a  Tr  y ) )  ->  a  e.  On )
2524ex 450 . . 3  |-  ( A. b  e.  a  (
( Tr  b  /\  A. y  e.  b  Tr  y )  ->  b  e.  On )  ->  (
( Tr  a  /\  A. y  e.  a  Tr  y )  ->  a  e.  On ) )
26 treq 4758 . . . . 5  |-  ( a  =  b  ->  ( Tr  a  <->  Tr  b )
)
27 raleq 3138 . . . . 5  |-  ( a  =  b  ->  ( A. y  e.  a  Tr  y  <->  A. y  e.  b  Tr  y ) )
2826, 27anbi12d 747 . . . 4  |-  ( a  =  b  ->  (
( Tr  a  /\  A. y  e.  a  Tr  y )  <->  ( Tr  b  /\  A. y  e.  b  Tr  y ) ) )
29 eleq1 2689 . . . 4  |-  ( a  =  b  ->  (
a  e.  On  <->  b  e.  On ) )
3028, 29imbi12d 334 . . 3  |-  ( a  =  b  ->  (
( ( Tr  a  /\  A. y  e.  a  Tr  y )  -> 
a  e.  On )  <-> 
( ( Tr  b  /\  A. y  e.  b  Tr  y )  -> 
b  e.  On ) ) )
31 treq 4758 . . . . 5  |-  ( a  =  x  ->  ( Tr  a  <->  Tr  x )
)
32 raleq 3138 . . . . 5  |-  ( a  =  x  ->  ( A. y  e.  a  Tr  y  <->  A. y  e.  x  Tr  y ) )
3331, 32anbi12d 747 . . . 4  |-  ( a  =  x  ->  (
( Tr  a  /\  A. y  e.  a  Tr  y )  <->  ( Tr  x  /\  A. y  e.  x  Tr  y ) ) )
34 eleq1 2689 . . . 4  |-  ( a  =  x  ->  (
a  e.  On  <->  x  e.  On ) )
3533, 34imbi12d 334 . . 3  |-  ( a  =  x  ->  (
( ( Tr  a  /\  A. y  e.  a  Tr  y )  -> 
a  e.  On )  <-> 
( ( Tr  x  /\  A. y  e.  x  Tr  y )  ->  x  e.  On ) ) )
3625, 30, 35setindtrs 37592 . 2  |-  ( E. c ( Tr  c  /\  x  e.  c
)  ->  ( ( Tr  x  /\  A. y  e.  x  Tr  y
)  ->  x  e.  On ) )
3710, 36mpcom 38 1  |-  ( ( Tr  x  /\  A. y  e.  x  Tr  y )  ->  x  e.  On )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912    C_ wss 3574   Tr wtr 4752   Ord word 5722   Oncon0 5723   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  dford3  37595
  Copyright terms: Public domain W3C validator