| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txdis | Structured version Visualization version Unicode version | ||
| Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| txdis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 20799 |
. . . . 5
| |
| 2 | distop 20799 |
. . . . 5
| |
| 3 | unipw 4918 |
. . . . . . 7
| |
| 4 | 3 | eqcomi 2631 |
. . . . . 6
|
| 5 | unipw 4918 |
. . . . . . 7
| |
| 6 | 5 | eqcomi 2631 |
. . . . . 6
|
| 7 | 4, 6 | txuni 21395 |
. . . . 5
|
| 8 | 1, 2, 7 | syl2an 494 |
. . . 4
|
| 9 | eqimss2 3658 |
. . . 4
| |
| 10 | 8, 9 | syl 17 |
. . 3
|
| 11 | sspwuni 4611 |
. . 3
| |
| 12 | 10, 11 | sylibr 224 |
. 2
|
| 13 | elelpwi 4171 |
. . . . . . . . 9
| |
| 14 | 13 | adantl 482 |
. . . . . . . 8
|
| 15 | xp1st 7198 |
. . . . . . . 8
| |
| 16 | snelpwi 4912 |
. . . . . . . 8
| |
| 17 | 14, 15, 16 | 3syl 18 |
. . . . . . 7
|
| 18 | xp2nd 7199 |
. . . . . . . 8
| |
| 19 | snelpwi 4912 |
. . . . . . . 8
| |
| 20 | 14, 18, 19 | 3syl 18 |
. . . . . . 7
|
| 21 | vsnid 4209 |
. . . . . . . 8
| |
| 22 | 1st2nd2 7205 |
. . . . . . . . . 10
| |
| 23 | 14, 22 | syl 17 |
. . . . . . . . 9
|
| 24 | 23 | sneqd 4189 |
. . . . . . . 8
|
| 25 | 21, 24 | syl5eleq 2707 |
. . . . . . 7
|
| 26 | simprl 794 |
. . . . . . . . 9
| |
| 27 | 23, 26 | eqeltrrd 2702 |
. . . . . . . 8
|
| 28 | 27 | snssd 4340 |
. . . . . . 7
|
| 29 | xpeq1 5128 |
. . . . . . . . . 10
| |
| 30 | 29 | eleq2d 2687 |
. . . . . . . . 9
|
| 31 | 29 | sseq1d 3632 |
. . . . . . . . 9
|
| 32 | 30, 31 | anbi12d 747 |
. . . . . . . 8
|
| 33 | xpeq2 5129 |
. . . . . . . . . . 11
| |
| 34 | fvex 6201 |
. . . . . . . . . . . 12
| |
| 35 | fvex 6201 |
. . . . . . . . . . . 12
| |
| 36 | 34, 35 | xpsn 6407 |
. . . . . . . . . . 11
|
| 37 | 33, 36 | syl6eq 2672 |
. . . . . . . . . 10
|
| 38 | 37 | eleq2d 2687 |
. . . . . . . . 9
|
| 39 | 37 | sseq1d 3632 |
. . . . . . . . 9
|
| 40 | 38, 39 | anbi12d 747 |
. . . . . . . 8
|
| 41 | 32, 40 | rspc2ev 3324 |
. . . . . . 7
|
| 42 | 17, 20, 25, 28, 41 | syl112anc 1330 |
. . . . . 6
|
| 43 | 42 | expr 643 |
. . . . 5
|
| 44 | 43 | ralrimdva 2969 |
. . . 4
|
| 45 | eltx 21371 |
. . . . 5
| |
| 46 | 1, 2, 45 | syl2an 494 |
. . . 4
|
| 47 | 44, 46 | sylibrd 249 |
. . 3
|
| 48 | 47 | ssrdv 3609 |
. 2
|
| 49 | 12, 48 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-tx 21365 |
| This theorem is referenced by: distgp 21903 |
| Copyright terms: Public domain | W3C validator |