MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindislem Structured version   Visualization version   Unicode version

Theorem txindislem 21436
Description: Lemma for txindis 21437. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindislem  |-  ( (  _I  `  A )  X.  (  _I  `  B ) )  =  (  _I  `  ( A  X.  B ) )

Proof of Theorem txindislem
StepHypRef Expression
1 0xp 5199 . . 3  |-  ( (/)  X.  (  _I  `  B
) )  =  (/)
2 fvprc 6185 . . . 4  |-  ( -.  A  e.  _V  ->  (  _I  `  A )  =  (/) )
32xpeq1d 5138 . . 3  |-  ( -.  A  e.  _V  ->  ( (  _I  `  A
)  X.  (  _I 
`  B ) )  =  ( (/)  X.  (  _I  `  B ) ) )
4 simpr 477 . . . . . . . 8  |-  ( ( -.  A  e.  _V  /\  B  =  (/) )  ->  B  =  (/) )
54xpeq2d 5139 . . . . . . 7  |-  ( ( -.  A  e.  _V  /\  B  =  (/) )  -> 
( A  X.  B
)  =  ( A  X.  (/) ) )
6 xp0 5552 . . . . . . 7  |-  ( A  X.  (/) )  =  (/)
75, 6syl6eq 2672 . . . . . 6  |-  ( ( -.  A  e.  _V  /\  B  =  (/) )  -> 
( A  X.  B
)  =  (/) )
87fveq2d 6195 . . . . 5  |-  ( ( -.  A  e.  _V  /\  B  =  (/) )  -> 
(  _I  `  ( A  X.  B ) )  =  (  _I  `  (/) ) )
9 0ex 4790 . . . . . 6  |-  (/)  e.  _V
10 fvi 6255 . . . . . 6  |-  ( (/)  e.  _V  ->  (  _I  `  (/) )  =  (/) )
119, 10ax-mp 5 . . . . 5  |-  (  _I 
`  (/) )  =  (/)
128, 11syl6eq 2672 . . . 4  |-  ( ( -.  A  e.  _V  /\  B  =  (/) )  -> 
(  _I  `  ( A  X.  B ) )  =  (/) )
13 dmexg 7097 . . . . . . . 8  |-  ( ( A  X.  B )  e.  _V  ->  dom  ( A  X.  B
)  e.  _V )
14 dmxp 5344 . . . . . . . . 9  |-  ( B  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
1514eleq1d 2686 . . . . . . . 8  |-  ( B  =/=  (/)  ->  ( dom  ( A  X.  B
)  e.  _V  <->  A  e.  _V ) )
1613, 15syl5ib 234 . . . . . . 7  |-  ( B  =/=  (/)  ->  ( ( A  X.  B )  e. 
_V  ->  A  e.  _V ) )
1716con3d 148 . . . . . 6  |-  ( B  =/=  (/)  ->  ( -.  A  e.  _V  ->  -.  ( A  X.  B
)  e.  _V )
)
1817impcom 446 . . . . 5  |-  ( ( -.  A  e.  _V  /\  B  =/=  (/) )  ->  -.  ( A  X.  B
)  e.  _V )
19 fvprc 6185 . . . . 5  |-  ( -.  ( A  X.  B
)  e.  _V  ->  (  _I  `  ( A  X.  B ) )  =  (/) )
2018, 19syl 17 . . . 4  |-  ( ( -.  A  e.  _V  /\  B  =/=  (/) )  -> 
(  _I  `  ( A  X.  B ) )  =  (/) )
2112, 20pm2.61dane 2881 . . 3  |-  ( -.  A  e.  _V  ->  (  _I  `  ( A  X.  B ) )  =  (/) )
221, 3, 213eqtr4a 2682 . 2  |-  ( -.  A  e.  _V  ->  ( (  _I  `  A
)  X.  (  _I 
`  B ) )  =  (  _I  `  ( A  X.  B
) ) )
23 xp0 5552 . . 3  |-  ( (  _I  `  A )  X.  (/) )  =  (/)
24 fvprc 6185 . . . 4  |-  ( -.  B  e.  _V  ->  (  _I  `  B )  =  (/) )
2524xpeq2d 5139 . . 3  |-  ( -.  B  e.  _V  ->  ( (  _I  `  A
)  X.  (  _I 
`  B ) )  =  ( (  _I 
`  A )  X.  (/) ) )
26 simpr 477 . . . . . . . 8  |-  ( ( -.  B  e.  _V  /\  A  =  (/) )  ->  A  =  (/) )
2726xpeq1d 5138 . . . . . . 7  |-  ( ( -.  B  e.  _V  /\  A  =  (/) )  -> 
( A  X.  B
)  =  ( (/)  X.  B ) )
28 0xp 5199 . . . . . . 7  |-  ( (/)  X.  B )  =  (/)
2927, 28syl6eq 2672 . . . . . 6  |-  ( ( -.  B  e.  _V  /\  A  =  (/) )  -> 
( A  X.  B
)  =  (/) )
3029fveq2d 6195 . . . . 5  |-  ( ( -.  B  e.  _V  /\  A  =  (/) )  -> 
(  _I  `  ( A  X.  B ) )  =  (  _I  `  (/) ) )
3130, 11syl6eq 2672 . . . 4  |-  ( ( -.  B  e.  _V  /\  A  =  (/) )  -> 
(  _I  `  ( A  X.  B ) )  =  (/) )
32 rnexg 7098 . . . . . . . 8  |-  ( ( A  X.  B )  e.  _V  ->  ran  ( A  X.  B
)  e.  _V )
33 rnxp 5564 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
3433eleq1d 2686 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( ran  ( A  X.  B
)  e.  _V  <->  B  e.  _V ) )
3532, 34syl5ib 234 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( ( A  X.  B )  e. 
_V  ->  B  e.  _V ) )
3635con3d 148 . . . . . 6  |-  ( A  =/=  (/)  ->  ( -.  B  e.  _V  ->  -.  ( A  X.  B
)  e.  _V )
)
3736impcom 446 . . . . 5  |-  ( ( -.  B  e.  _V  /\  A  =/=  (/) )  ->  -.  ( A  X.  B
)  e.  _V )
3837, 19syl 17 . . . 4  |-  ( ( -.  B  e.  _V  /\  A  =/=  (/) )  -> 
(  _I  `  ( A  X.  B ) )  =  (/) )
3931, 38pm2.61dane 2881 . . 3  |-  ( -.  B  e.  _V  ->  (  _I  `  ( A  X.  B ) )  =  (/) )
4023, 25, 393eqtr4a 2682 . 2  |-  ( -.  B  e.  _V  ->  ( (  _I  `  A
)  X.  (  _I 
`  B ) )  =  (  _I  `  ( A  X.  B
) ) )
41 fvi 6255 . . . 4  |-  ( A  e.  _V  ->  (  _I  `  A )  =  A )
42 fvi 6255 . . . 4  |-  ( B  e.  _V  ->  (  _I  `  B )  =  B )
43 xpeq12 5134 . . . 4  |-  ( ( (  _I  `  A
)  =  A  /\  (  _I  `  B )  =  B )  -> 
( (  _I  `  A )  X.  (  _I  `  B ) )  =  ( A  X.  B ) )
4441, 42, 43syl2an 494 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( (  _I  `  A )  X.  (  _I  `  B ) )  =  ( A  X.  B ) )
45 xpexg 6960 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  X.  B
)  e.  _V )
46 fvi 6255 . . . 4  |-  ( ( A  X.  B )  e.  _V  ->  (  _I  `  ( A  X.  B ) )  =  ( A  X.  B
) )
4745, 46syl 17 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  (  _I  `  ( A  X.  B ) )  =  ( A  X.  B ) )
4844, 47eqtr4d 2659 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( (  _I  `  A )  X.  (  _I  `  B ) )  =  (  _I  `  ( A  X.  B
) ) )
4922, 40, 48ecase 983 1  |-  ( (  _I  `  A )  X.  (  _I  `  B ) )  =  (  _I  `  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  txindis  21437
  Copyright terms: Public domain W3C validator