| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txindislem | Structured version Visualization version Unicode version | ||
| Description: Lemma for txindis 21437. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| txindislem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5199 |
. . 3
| |
| 2 | fvprc 6185 |
. . . 4
| |
| 3 | 2 | xpeq1d 5138 |
. . 3
|
| 4 | simpr 477 |
. . . . . . . 8
| |
| 5 | 4 | xpeq2d 5139 |
. . . . . . 7
|
| 6 | xp0 5552 |
. . . . . . 7
| |
| 7 | 5, 6 | syl6eq 2672 |
. . . . . 6
|
| 8 | 7 | fveq2d 6195 |
. . . . 5
|
| 9 | 0ex 4790 |
. . . . . 6
| |
| 10 | fvi 6255 |
. . . . . 6
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . 5
|
| 12 | 8, 11 | syl6eq 2672 |
. . . 4
|
| 13 | dmexg 7097 |
. . . . . . . 8
| |
| 14 | dmxp 5344 |
. . . . . . . . 9
| |
| 15 | 14 | eleq1d 2686 |
. . . . . . . 8
|
| 16 | 13, 15 | syl5ib 234 |
. . . . . . 7
|
| 17 | 16 | con3d 148 |
. . . . . 6
|
| 18 | 17 | impcom 446 |
. . . . 5
|
| 19 | fvprc 6185 |
. . . . 5
| |
| 20 | 18, 19 | syl 17 |
. . . 4
|
| 21 | 12, 20 | pm2.61dane 2881 |
. . 3
|
| 22 | 1, 3, 21 | 3eqtr4a 2682 |
. 2
|
| 23 | xp0 5552 |
. . 3
| |
| 24 | fvprc 6185 |
. . . 4
| |
| 25 | 24 | xpeq2d 5139 |
. . 3
|
| 26 | simpr 477 |
. . . . . . . 8
| |
| 27 | 26 | xpeq1d 5138 |
. . . . . . 7
|
| 28 | 0xp 5199 |
. . . . . . 7
| |
| 29 | 27, 28 | syl6eq 2672 |
. . . . . 6
|
| 30 | 29 | fveq2d 6195 |
. . . . 5
|
| 31 | 30, 11 | syl6eq 2672 |
. . . 4
|
| 32 | rnexg 7098 |
. . . . . . . 8
| |
| 33 | rnxp 5564 |
. . . . . . . . 9
| |
| 34 | 33 | eleq1d 2686 |
. . . . . . . 8
|
| 35 | 32, 34 | syl5ib 234 |
. . . . . . 7
|
| 36 | 35 | con3d 148 |
. . . . . 6
|
| 37 | 36 | impcom 446 |
. . . . 5
|
| 38 | 37, 19 | syl 17 |
. . . 4
|
| 39 | 31, 38 | pm2.61dane 2881 |
. . 3
|
| 40 | 23, 25, 39 | 3eqtr4a 2682 |
. 2
|
| 41 | fvi 6255 |
. . . 4
| |
| 42 | fvi 6255 |
. . . 4
| |
| 43 | xpeq12 5134 |
. . . 4
| |
| 44 | 41, 42, 43 | syl2an 494 |
. . 3
|
| 45 | xpexg 6960 |
. . . 4
| |
| 46 | fvi 6255 |
. . . 4
| |
| 47 | 45, 46 | syl 17 |
. . 3
|
| 48 | 44, 47 | eqtr4d 2659 |
. 2
|
| 49 | 22, 40, 48 | ecase 983 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: txindis 21437 |
| Copyright terms: Public domain | W3C validator |