| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txuni2 | Structured version Visualization version Unicode version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| txval.1 |
|
| txuni2.1 |
|
| txuni2.2 |
|
| Ref | Expression |
|---|---|
| txuni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5227 |
. . 3
| |
| 2 | txuni2.1 |
. . . . . . . 8
| |
| 3 | 2 | eleq2i 2693 |
. . . . . . 7
|
| 4 | eluni2 4440 |
. . . . . . 7
| |
| 5 | 3, 4 | bitri 264 |
. . . . . 6
|
| 6 | txuni2.2 |
. . . . . . . 8
| |
| 7 | 6 | eleq2i 2693 |
. . . . . . 7
|
| 8 | eluni2 4440 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 264 |
. . . . . 6
|
| 10 | 5, 9 | anbi12i 733 |
. . . . 5
|
| 11 | opelxp 5146 |
. . . . 5
| |
| 12 | reeanv 3107 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3bitr4i 292 |
. . . 4
|
| 14 | opelxp 5146 |
. . . . . 6
| |
| 15 | eqid 2622 |
. . . . . . . . . 10
| |
| 16 | xpeq1 5128 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 18 | xpeq2 5129 |
. . . . . . . . . . . 12
| |
| 19 | 18 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | rspc2ev 3324 |
. . . . . . . . . 10
|
| 21 | 15, 20 | mp3an3 1413 |
. . . . . . . . 9
|
| 22 | vex 3203 |
. . . . . . . . . . 11
| |
| 23 | vex 3203 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | xpex 6962 |
. . . . . . . . . 10
|
| 25 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 26 | 25 | 2rexbidv 3057 |
. . . . . . . . . 10
|
| 27 | txval.1 |
. . . . . . . . . . 11
| |
| 28 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 29 | 28 | rnmpt2 6770 |
. . . . . . . . . . 11
|
| 30 | 27, 29 | eqtri 2644 |
. . . . . . . . . 10
|
| 31 | 24, 26, 30 | elab2 3354 |
. . . . . . . . 9
|
| 32 | 21, 31 | sylibr 224 |
. . . . . . . 8
|
| 33 | elssuni 4467 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
|
| 35 | 34 | sseld 3602 |
. . . . . 6
|
| 36 | 14, 35 | syl5bir 233 |
. . . . 5
|
| 37 | 36 | rexlimivv 3036 |
. . . 4
|
| 38 | 13, 37 | sylbi 207 |
. . 3
|
| 39 | 1, 38 | relssi 5211 |
. 2
|
| 40 | elssuni 4467 |
. . . . . . . . . 10
| |
| 41 | 40, 2 | syl6sseqr 3652 |
. . . . . . . . 9
|
| 42 | elssuni 4467 |
. . . . . . . . . 10
| |
| 43 | 42, 6 | syl6sseqr 3652 |
. . . . . . . . 9
|
| 44 | xpss12 5225 |
. . . . . . . . 9
| |
| 45 | 41, 43, 44 | syl2an 494 |
. . . . . . . 8
|
| 46 | vex 3203 |
. . . . . . . . . 10
| |
| 47 | vex 3203 |
. . . . . . . . . 10
| |
| 48 | 46, 47 | xpex 6962 |
. . . . . . . . 9
|
| 49 | 48 | elpw 4164 |
. . . . . . . 8
|
| 50 | 45, 49 | sylibr 224 |
. . . . . . 7
|
| 51 | 50 | rgen2 2975 |
. . . . . 6
|
| 52 | 28 | fmpt2 7237 |
. . . . . 6
|
| 53 | 51, 52 | mpbi 220 |
. . . . 5
|
| 54 | frn 6053 |
. . . . 5
| |
| 55 | 53, 54 | ax-mp 5 |
. . . 4
|
| 56 | 27, 55 | eqsstri 3635 |
. . 3
|
| 57 | sspwuni 4611 |
. . 3
| |
| 58 | 56, 57 | mpbi 220 |
. 2
|
| 59 | 39, 58 | eqssi 3619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: txbasex 21369 txtopon 21394 sxsigon 30255 |
| Copyright terms: Public domain | W3C validator |