Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxsigon Structured version   Visualization version   Unicode version

Theorem sxsigon 30255
Description: A product sigma-algebra is a sigma-algebra on the product of the bases. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxsigon  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( S ×s  T )  e.  (sigAlgebra `  ( U. S  X.  U. T ) ) )

Proof of Theorem sxsigon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxsiga 30254 . 2  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( S ×s  T )  e.  U. ran sigAlgebra )
2 eqid 2622 . . . . . 6  |-  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )  =  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )
32sxval 30253 . . . . 5  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( S ×s  T )  =  (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
43unieqd 4446 . . . 4  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  ->  U. ( S ×s  T )  =  U. (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
5 mpt2exga 7246 . . . . 5  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) )  e.  _V )
6 rnexg 7098 . . . . 5  |-  ( ( x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )  e.  _V  ->  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) )  e.  _V )
7 unisg 30206 . . . . 5  |-  ( ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) )  e.  _V  ->  U. (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) ) )  = 
U. ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) )
85, 6, 73syl 18 . . . 4  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  ->  U. (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) )  =  U. ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) ) )
94, 8eqtrd 2656 . . 3  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  ->  U. ( S ×s  T )  =  U. ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) ) )
10 eqid 2622 . . . 4  |-  U. S  =  U. S
11 eqid 2622 . . . 4  |-  U. T  =  U. T
122, 10, 11txuni2 21368 . . 3  |-  ( U. S  X.  U. T )  =  U. ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )
139, 12syl6reqr 2675 . 2  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( U. S  X.  U. T )  =  U. ( S ×s  T ) )
14 issgon 30186 . 2  |-  ( ( S ×s  T )  e.  (sigAlgebra `  ( U. S  X.  U. T ) )  <->  ( ( S ×s  T )  e.  U. ran sigAlgebra  /\  ( U. S  X.  U. T )  =  U. ( S ×s  T ) ) )
151, 13, 14sylanbrc 698 1  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( S ×s  T )  e.  (sigAlgebra `  ( U. S  X.  U. T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   U.cuni 4436    X. cxp 5112   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  sigAlgebracsiga 30170  sigaGencsigagen 30201   ×s csx 30251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-siga 30171  df-sigagen 30202  df-sx 30252
This theorem is referenced by:  sxuni  30256
  Copyright terms: Public domain W3C validator