MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnprima Structured version   Visualization version   Unicode version

Theorem ucnprima 22086
Description: The preimage by a uniformly continuous function  F of an entourage  W of  Y is an entourage of  X. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
ucnprima.2  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
ucnprima.3  |-  ( ph  ->  F  e.  ( U Cnu V ) )
ucnprima.4  |-  ( ph  ->  W  e.  V )
ucnprima.5  |-  G  =  ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)
Assertion
Ref Expression
ucnprima  |-  ( ph  ->  ( `' G " W )  e.  U
)
Distinct variable groups:    x, y, F    x, X, y    x, G, y    x, U, y   
x, V    x, W, y    x, Y    ph, x, y
Allowed substitution hints:    V( y)    Y( y)

Proof of Theorem ucnprima
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ucnprima.1 . . . 4  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
2 ucnprima.2 . . . 4  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
3 ucnprima.3 . . . 4  |-  ( ph  ->  F  e.  ( U Cnu V ) )
4 ucnprima.4 . . . 4  |-  ( ph  ->  W  e.  V )
5 ucnprima.5 . . . 4  |-  G  =  ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)
61, 2, 3, 4, 5ucnima 22085 . . 3  |-  ( ph  ->  E. r  e.  U  ( G " r ) 
C_  W )
75mpt2fun 6762 . . . . 5  |-  Fun  G
8 ustssxp 22008 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  r  e.  U )  ->  r  C_  ( X  X.  X
) )
91, 8sylan 488 . . . . . 6  |-  ( (
ph  /\  r  e.  U )  ->  r  C_  ( X  X.  X
) )
10 opex 4932 . . . . . . 7  |-  <. ( F `  x ) ,  ( F `  y ) >.  e.  _V
115, 10dmmpt2 7240 . . . . . 6  |-  dom  G  =  ( X  X.  X )
129, 11syl6sseqr 3652 . . . . 5  |-  ( (
ph  /\  r  e.  U )  ->  r  C_ 
dom  G )
13 funimass3 6333 . . . . 5  |-  ( ( Fun  G  /\  r  C_ 
dom  G )  -> 
( ( G "
r )  C_  W  <->  r 
C_  ( `' G " W ) ) )
147, 12, 13sylancr 695 . . . 4  |-  ( (
ph  /\  r  e.  U )  ->  (
( G " r
)  C_  W  <->  r  C_  ( `' G " W ) ) )
1514rexbidva 3049 . . 3  |-  ( ph  ->  ( E. r  e.  U  ( G "
r )  C_  W  <->  E. r  e.  U  r 
C_  ( `' G " W ) ) )
166, 15mpbid 222 . 2  |-  ( ph  ->  E. r  e.  U  r  C_  ( `' G " W ) )
171adantr 481 . . . 4  |-  ( (
ph  /\  r  e.  U )  ->  U  e.  (UnifOn `  X )
)
18 simpr 477 . . . 4  |-  ( (
ph  /\  r  e.  U )  ->  r  e.  U )
19 cnvimass 5485 . . . . . 6  |-  ( `' G " W ) 
C_  dom  G
2019, 11sseqtri 3637 . . . . 5  |-  ( `' G " W ) 
C_  ( X  X.  X )
2120a1i 11 . . . 4  |-  ( (
ph  /\  r  e.  U )  ->  ( `' G " W ) 
C_  ( X  X.  X ) )
22 ustssel 22009 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  r  e.  U  /\  ( `' G " W ) 
C_  ( X  X.  X ) )  -> 
( r  C_  ( `' G " W )  ->  ( `' G " W )  e.  U
) )
2317, 18, 21, 22syl3anc 1326 . . 3  |-  ( (
ph  /\  r  e.  U )  ->  (
r  C_  ( `' G " W )  -> 
( `' G " W )  e.  U
) )
2423rexlimdva 3031 . 2  |-  ( ph  ->  ( E. r  e.  U  r  C_  ( `' G " W )  ->  ( `' G " W )  e.  U
) )
2516, 24mpd 15 1  |-  ( ph  ->  ( `' G " W )  e.  U
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   <.cop 4183    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  UnifOncust 22003   Cnucucn 22079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ust 22004  df-ucn 22080
This theorem is referenced by:  fmucnd  22096
  Copyright terms: Public domain W3C validator