MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgrlem Structured version   Visualization version   Unicode version

Theorem uhgrspansubgrlem 26182
Description: Lemma for uhgrspansubgr 26183: The edges of the graph  S obtained by removing some edges of a hypergraph  G are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 26183. (Contributed by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v  |-  V  =  (Vtx `  G )
uhgrspan.e  |-  E  =  (iEdg `  G )
uhgrspan.s  |-  ( ph  ->  S  e.  W )
uhgrspan.q  |-  ( ph  ->  (Vtx `  S )  =  V )
uhgrspan.r  |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )
uhgrspan.g  |-  ( ph  ->  G  e. UHGraph  )
Assertion
Ref Expression
uhgrspansubgrlem  |-  ( ph  ->  (Edg `  S )  C_ 
~P (Vtx `  S
) )

Proof of Theorem uhgrspansubgrlem
Dummy variables  e 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 edgval 25941 . . . 4  |-  (Edg `  S )  =  ran  (iEdg `  S )
21eleq2i 2693 . . 3  |-  ( e  e.  (Edg `  S
)  <->  e  e.  ran  (iEdg `  S ) )
3 uhgrspan.g . . . . . . 7  |-  ( ph  ->  G  e. UHGraph  )
4 uhgrspan.e . . . . . . . 8  |-  E  =  (iEdg `  G )
54uhgrfun 25961 . . . . . . 7  |-  ( G  e. UHGraph  ->  Fun  E )
6 funres 5929 . . . . . . 7  |-  ( Fun 
E  ->  Fun  ( E  |`  A ) )
73, 5, 63syl 18 . . . . . 6  |-  ( ph  ->  Fun  ( E  |`  A ) )
8 uhgrspan.r . . . . . . 7  |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )
98funeqd 5910 . . . . . 6  |-  ( ph  ->  ( Fun  (iEdg `  S )  <->  Fun  ( E  |`  A ) ) )
107, 9mpbird 247 . . . . 5  |-  ( ph  ->  Fun  (iEdg `  S
) )
11 elrnrexdmb 6364 . . . . 5  |-  ( Fun  (iEdg `  S )  ->  ( e  e.  ran  (iEdg `  S )  <->  E. i  e.  dom  (iEdg `  S
) e  =  ( (iEdg `  S ) `  i ) ) )
1210, 11syl 17 . . . 4  |-  ( ph  ->  ( e  e.  ran  (iEdg `  S )  <->  E. i  e.  dom  (iEdg `  S
) e  =  ( (iEdg `  S ) `  i ) ) )
138adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  (iEdg `  S
)  =  ( E  |`  A ) )
1413fveq1d 6193 . . . . . . . 8  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( (iEdg `  S ) `  i
)  =  ( ( E  |`  A ) `  i ) )
158dmeqd 5326 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  (iEdg `  S
)  =  dom  ( E  |`  A ) )
16 dmres 5419 . . . . . . . . . . . . 13  |-  dom  ( E  |`  A )  =  ( A  i^i  dom  E )
1715, 16syl6eq 2672 . . . . . . . . . . . 12  |-  ( ph  ->  dom  (iEdg `  S
)  =  ( A  i^i  dom  E )
)
1817eleq2d 2687 . . . . . . . . . . 11  |-  ( ph  ->  ( i  e.  dom  (iEdg `  S )  <->  i  e.  ( A  i^i  dom  E
) ) )
19 elinel1 3799 . . . . . . . . . . 11  |-  ( i  e.  ( A  i^i  dom 
E )  ->  i  e.  A )
2018, 19syl6bi 243 . . . . . . . . . 10  |-  ( ph  ->  ( i  e.  dom  (iEdg `  S )  -> 
i  e.  A ) )
2120imp 445 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  i  e.  A )
2221fvresd 6208 . . . . . . . 8  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( ( E  |`  A ) `  i )  =  ( E `  i ) )
2314, 22eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( (iEdg `  S ) `  i
)  =  ( E `
 i ) )
24 elinel2 3800 . . . . . . . . . . 11  |-  ( i  e.  ( A  i^i  dom 
E )  ->  i  e.  dom  E )
2518, 24syl6bi 243 . . . . . . . . . 10  |-  ( ph  ->  ( i  e.  dom  (iEdg `  S )  -> 
i  e.  dom  E
) )
2625imp 445 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  i  e.  dom  E )
27 uhgrspan.v . . . . . . . . . 10  |-  V  =  (Vtx `  G )
2827, 4uhgrss 25959 . . . . . . . . 9  |-  ( ( G  e. UHGraph  /\  i  e.  dom  E )  -> 
( E `  i
)  C_  V )
293, 26, 28syl2an2r 876 . . . . . . . 8  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( E `  i )  C_  V
)
30 uhgrspan.q . . . . . . . . . . . 12  |-  ( ph  ->  (Vtx `  S )  =  V )
3130pweqd 4163 . . . . . . . . . . 11  |-  ( ph  ->  ~P (Vtx `  S
)  =  ~P V
)
3231eleq2d 2687 . . . . . . . . . 10  |-  ( ph  ->  ( ( E `  i )  e.  ~P (Vtx `  S )  <->  ( E `  i )  e.  ~P V ) )
3332adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( ( E `  i )  e.  ~P (Vtx `  S
)  <->  ( E `  i )  e.  ~P V ) )
34 fvex 6201 . . . . . . . . . 10  |-  ( E `
 i )  e. 
_V
3534elpw 4164 . . . . . . . . 9  |-  ( ( E `  i )  e.  ~P V  <->  ( E `  i )  C_  V
)
3633, 35syl6bb 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( ( E `  i )  e.  ~P (Vtx `  S
)  <->  ( E `  i )  C_  V
) )
3729, 36mpbird 247 . . . . . . 7  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( E `  i )  e.  ~P (Vtx `  S ) )
3823, 37eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( (iEdg `  S ) `  i
)  e.  ~P (Vtx `  S ) )
39 eleq1 2689 . . . . . 6  |-  ( e  =  ( (iEdg `  S ) `  i
)  ->  ( e  e.  ~P (Vtx `  S
)  <->  ( (iEdg `  S ) `  i
)  e.  ~P (Vtx `  S ) ) )
4038, 39syl5ibrcom 237 . . . . 5  |-  ( (
ph  /\  i  e.  dom  (iEdg `  S )
)  ->  ( e  =  ( (iEdg `  S ) `  i
)  ->  e  e.  ~P (Vtx `  S )
) )
4140rexlimdva 3031 . . . 4  |-  ( ph  ->  ( E. i  e. 
dom  (iEdg `  S )
e  =  ( (iEdg `  S ) `  i
)  ->  e  e.  ~P (Vtx `  S )
) )
4212, 41sylbid 230 . . 3  |-  ( ph  ->  ( e  e.  ran  (iEdg `  S )  -> 
e  e.  ~P (Vtx `  S ) ) )
432, 42syl5bi 232 . 2  |-  ( ph  ->  ( e  e.  (Edg
`  S )  -> 
e  e.  ~P (Vtx `  S ) ) )
4443ssrdv 3609 1  |-  ( ph  ->  (Edg `  S )  C_ 
~P (Vtx `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953
This theorem is referenced by:  uhgrspansubgr  26183
  Copyright terms: Public domain W3C validator