MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subusgr Structured version   Visualization version   Unicode version

Theorem subusgr 26181
Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.)
Assertion
Ref Expression
subusgr  |-  ( ( G  e. USGraph  /\  S SubGraph  G )  ->  S  e. USGraph  )

Proof of Theorem subusgr
Dummy variables  x  e  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
4 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
5 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) ) )
7 usgruhgr 26078 . . . . . . . . . . 11  |-  ( G  e. USGraph  ->  G  e. UHGraph  )
8 subgruhgrfun 26174 . . . . . . . . . . 11  |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
97, 8sylan 488 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
109ancoms 469 . . . . . . . . 9  |-  ( ( S SubGraph  G  /\  G  e. USGraph  )  ->  Fun  (iEdg `  S
) )
11 funfn 5918 . . . . . . . . 9  |-  ( Fun  (iEdg `  S )  <->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
1210, 11sylib 208 . . . . . . . 8  |-  ( ( S SubGraph  G  /\  G  e. USGraph  )  ->  (iEdg `  S
)  Fn  dom  (iEdg `  S ) )
1312adantl 482 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
14 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  S SubGraph  G )
15 usgrumgr 26074 . . . . . . . . . . . . 13  |-  ( G  e. USGraph  ->  G  e. UMGraph  )
1615adantl 482 . . . . . . . . . . . 12  |-  ( ( S SubGraph  G  /\  G  e. USGraph  )  ->  G  e. UMGraph  )
1716adantl 482 . . . . . . . . . . 11  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  G  e. UMGraph  )
1817adantr 481 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  G  e. UMGraph  )
19 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  x  e.  dom  (iEdg `  S ) )
201, 3subumgredg2 26177 . . . . . . . . . 10  |-  ( ( S SubGraph  G  /\  G  e. UMGraph  /\  x  e.  dom  (iEdg `  S ) )  ->  ( (iEdg `  S ) `  x
)  e.  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
2114, 18, 19, 20syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  S
) `  x )  e.  { e  e.  ~P (Vtx `  S )  |  ( # `  e
)  =  2 } )
2221ralrimiva 2966 . . . . . . . 8  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
23 fnfvrnss 6390 . . . . . . . 8  |-  ( ( (iEdg `  S )  Fn  dom  (iEdg `  S
)  /\  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )  ->  ran  (iEdg `  S
)  C_  { e  e.  ~P (Vtx `  S
)  |  ( # `  e )  =  2 } )
2413, 22, 23syl2anc 693 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  ran  (iEdg `  S )  C_  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
25 df-f 5892 . . . . . . 7  |-  ( (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 }  <->  ( (iEdg `  S )  Fn  dom  (iEdg `  S )  /\  ran  (iEdg `  S )  C_ 
{ e  e.  ~P (Vtx `  S )  |  ( # `  e
)  =  2 } ) )
2613, 24, 25sylanbrc 698 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
27 simp2 1062 . . . . . . . . 9  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  (iEdg `  S )  C_  (iEdg `  G ) )
282, 4usgrfs 26052 . . . . . . . . . . 11  |-  ( G  e. USGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { y  e.  ~P (Vtx `  G )  |  (
# `  y )  =  2 } )
29 df-f1 5893 . . . . . . . . . . . 12  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
y  e.  ~P (Vtx `  G )  |  (
# `  y )  =  2 }  <->  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { y  e.  ~P (Vtx `  G )  |  (
# `  y )  =  2 }  /\  Fun  `' (iEdg `  G )
) )
30 ffun 6048 . . . . . . . . . . . . 13  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { y  e.  ~P (Vtx `  G )  |  (
# `  y )  =  2 }  ->  Fun  (iEdg `  G )
)
3130anim1i 592 . . . . . . . . . . . 12  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) --> { y  e. 
~P (Vtx `  G
)  |  ( # `  y )  =  2 }  /\  Fun  `' (iEdg `  G ) )  ->  ( Fun  (iEdg `  G )  /\  Fun  `' (iEdg `  G )
) )
3229, 31sylbi 207 . . . . . . . . . . 11  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
y  e.  ~P (Vtx `  G )  |  (
# `  y )  =  2 }  ->  ( Fun  (iEdg `  G
)  /\  Fun  `' (iEdg `  G ) ) )
3328, 32syl 17 . . . . . . . . . 10  |-  ( G  e. USGraph  ->  ( Fun  (iEdg `  G )  /\  Fun  `' (iEdg `  G )
) )
3433adantl 482 . . . . . . . . 9  |-  ( ( S SubGraph  G  /\  G  e. USGraph  )  ->  ( Fun  (iEdg `  G )  /\  Fun  `' (iEdg `  G )
) )
3527, 34anim12ci 591 . . . . . . . 8  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  (
( Fun  (iEdg `  G
)  /\  Fun  `' (iEdg `  G ) )  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )
36 df-3an 1039 . . . . . . . 8  |-  ( ( Fun  (iEdg `  G
)  /\  Fun  `' (iEdg `  G )  /\  (iEdg `  S )  C_  (iEdg `  G ) )  <->  ( ( Fun  (iEdg `  G )  /\  Fun  `' (iEdg `  G ) )  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )
3735, 36sylibr 224 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  ( Fun  (iEdg `  G )  /\  Fun  `' (iEdg `  G )  /\  (iEdg `  S )  C_  (iEdg `  G ) ) )
38 f1ssf1 6168 . . . . . . 7  |-  ( ( Fun  (iEdg `  G
)  /\  Fun  `' (iEdg `  G )  /\  (iEdg `  S )  C_  (iEdg `  G ) )  ->  Fun  `' (iEdg `  S )
)
3937, 38syl 17 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  Fun  `' (iEdg `  S )
)
40 df-f1 5893 . . . . . 6  |-  ( (iEdg `  S ) : dom  (iEdg `  S ) -1-1-> {
e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 }  <->  ( (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 }  /\  Fun  `' (iEdg `  S )
) )
4126, 39, 40sylanbrc 698 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  (iEdg `  S ) : dom  (iEdg `  S ) -1-1-> {
e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
42 subgrv 26162 . . . . . . . 8  |-  ( S SubGraph  G  ->  ( S  e. 
_V  /\  G  e.  _V ) )
431, 3isusgrs 26051 . . . . . . . . 9  |-  ( S  e.  _V  ->  ( S  e. USGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) -1-1-> { e  e.  ~P (Vtx `  S )  |  ( # `  e
)  =  2 } ) )
4443adantr 481 . . . . . . . 8  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  ( S  e. USGraph  <->  (iEdg `  S
) : dom  (iEdg `  S ) -1-1-> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } ) )
4542, 44syl 17 . . . . . . 7  |-  ( S SubGraph  G  ->  ( S  e. USGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) -1-1-> {
e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } ) )
4645adantr 481 . . . . . 6  |-  ( ( S SubGraph  G  /\  G  e. USGraph  )  ->  ( S  e. USGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) -1-1-> {
e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } ) )
4746adantl 482 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  ( S  e. USGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) -1-1-> { e  e.  ~P (Vtx `  S )  |  ( # `  e
)  =  2 } ) )
4841, 47mpbird 247 . . . 4  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. USGraph  ) )  ->  S  e. USGraph  )
4948ex 450 . . 3  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  (
( S SubGraph  G  /\  G  e. USGraph  )  ->  S  e. USGraph  ) )
506, 49syl 17 . 2  |-  ( S SubGraph  G  ->  ( ( S SubGraph  G  /\  G  e. USGraph  )  ->  S  e. USGraph  ) )
5150anabsi8 861 1  |-  ( ( G  e. USGraph  /\  S SubGraph  G )  ->  S  e. USGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UMGraph cumgr 25976   USGraph cusgr 26044   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-subgr 26160
This theorem is referenced by:  usgrspan  26187
  Copyright terms: Public domain W3C validator