| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > undmrnresiss | Structured version Visualization version Unicode version | ||
| Description: Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 37911. (Contributed by RP, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| undmrnresiss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5410 |
. . 3
| |
| 2 | 1 | sseq1i 3629 |
. 2
|
| 3 | unss 3787 |
. 2
| |
| 4 | relres 5426 |
. . . . . 6
| |
| 5 | ssrel 5207 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | df-br 4654 |
. . . . . . . . . 10
| |
| 8 | vex 3203 |
. . . . . . . . . . 11
| |
| 9 | 8 | ideq 5274 |
. . . . . . . . . 10
|
| 10 | 7, 9 | bitr3i 266 |
. . . . . . . . 9
|
| 11 | vex 3203 |
. . . . . . . . . 10
| |
| 12 | 11 | eldm 5321 |
. . . . . . . . 9
|
| 13 | 10, 12 | anbi12i 733 |
. . . . . . . 8
|
| 14 | 8 | opelres 5401 |
. . . . . . . 8
|
| 15 | 19.42v 1918 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | 3bitr4i 292 |
. . . . . . 7
|
| 17 | df-br 4654 |
. . . . . . . 8
| |
| 18 | 17 | bicomi 214 |
. . . . . . 7
|
| 19 | 16, 18 | imbi12i 340 |
. . . . . 6
|
| 20 | 19 | 2albii 1748 |
. . . . 5
|
| 21 | 19.23v 1902 |
. . . . . . . 8
| |
| 22 | 21 | bicomi 214 |
. . . . . . 7
|
| 23 | 22 | 2albii 1748 |
. . . . . 6
|
| 24 | alcom 2037 |
. . . . . . . 8
| |
| 25 | ancomst 468 |
. . . . . . . . . . . 12
| |
| 26 | impexp 462 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | bitri 264 |
. . . . . . . . . . 11
|
| 28 | 27 | albii 1747 |
. . . . . . . . . 10
|
| 29 | 19.21v 1868 |
. . . . . . . . . 10
| |
| 30 | equcom 1945 |
. . . . . . . . . . . . . 14
| |
| 31 | 30 | imbi1i 339 |
. . . . . . . . . . . . 13
|
| 32 | 31 | albii 1747 |
. . . . . . . . . . . 12
|
| 33 | breq2 4657 |
. . . . . . . . . . . . 13
| |
| 34 | 33 | equsalvw 1931 |
. . . . . . . . . . . 12
|
| 35 | 32, 34 | bitri 264 |
. . . . . . . . . . 11
|
| 36 | 35 | imbi2i 326 |
. . . . . . . . . 10
|
| 37 | 28, 29, 36 | 3bitri 286 |
. . . . . . . . 9
|
| 38 | 37 | albii 1747 |
. . . . . . . 8
|
| 39 | 24, 38 | bitri 264 |
. . . . . . 7
|
| 40 | 39 | albii 1747 |
. . . . . 6
|
| 41 | 23, 40 | bitri 264 |
. . . . 5
|
| 42 | 6, 20, 41 | 3bitri 286 |
. . . 4
|
| 43 | relres 5426 |
. . . . . 6
| |
| 44 | ssrel 5207 |
. . . . . 6
| |
| 45 | 43, 44 | ax-mp 5 |
. . . . 5
|
| 46 | df-br 4654 |
. . . . . . . . . 10
| |
| 47 | 8 | ideq 5274 |
. . . . . . . . . 10
|
| 48 | 46, 47 | bitr3i 266 |
. . . . . . . . 9
|
| 49 | vex 3203 |
. . . . . . . . . 10
| |
| 50 | 49 | elrn 5366 |
. . . . . . . . 9
|
| 51 | 48, 50 | anbi12i 733 |
. . . . . . . 8
|
| 52 | 8 | opelres 5401 |
. . . . . . . 8
|
| 53 | 19.42v 1918 |
. . . . . . . 8
| |
| 54 | 51, 52, 53 | 3bitr4i 292 |
. . . . . . 7
|
| 55 | df-br 4654 |
. . . . . . . 8
| |
| 56 | 55 | bicomi 214 |
. . . . . . 7
|
| 57 | 54, 56 | imbi12i 340 |
. . . . . 6
|
| 58 | 57 | 2albii 1748 |
. . . . 5
|
| 59 | 19.23v 1902 |
. . . . . . . 8
| |
| 60 | 59 | bicomi 214 |
. . . . . . 7
|
| 61 | 60 | 2albii 1748 |
. . . . . 6
|
| 62 | alrot3 2038 |
. . . . . 6
| |
| 63 | ancomst 468 |
. . . . . . . . . 10
| |
| 64 | impexp 462 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | bitri 264 |
. . . . . . . . 9
|
| 66 | 65 | albii 1747 |
. . . . . . . 8
|
| 67 | 19.21v 1868 |
. . . . . . . 8
| |
| 68 | equcom 1945 |
. . . . . . . . . . . 12
| |
| 69 | 68 | imbi1i 339 |
. . . . . . . . . . 11
|
| 70 | 69 | albii 1747 |
. . . . . . . . . 10
|
| 71 | breq2 4657 |
. . . . . . . . . . 11
| |
| 72 | 71 | equsalvw 1931 |
. . . . . . . . . 10
|
| 73 | 70, 72 | bitri 264 |
. . . . . . . . 9
|
| 74 | 73 | imbi2i 326 |
. . . . . . . 8
|
| 75 | 66, 67, 74 | 3bitri 286 |
. . . . . . 7
|
| 76 | 75 | 2albii 1748 |
. . . . . 6
|
| 77 | 61, 62, 76 | 3bitr2i 288 |
. . . . 5
|
| 78 | 45, 58, 77 | 3bitri 286 |
. . . 4
|
| 79 | 42, 78 | anbi12i 733 |
. . 3
|
| 80 | 19.26-2 1799 |
. . 3
| |
| 81 | pm4.76 910 |
. . . 4
| |
| 82 | 81 | 2albii 1748 |
. . 3
|
| 83 | 79, 80, 82 | 3bitr2i 288 |
. 2
|
| 84 | 2, 3, 83 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 |
| This theorem is referenced by: reflexg 37911 |
| Copyright terms: Public domain | W3C validator |