Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen Structured version   Visualization version   Unicode version

Theorem unisalgen 40558
Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
unisalgen.x  |-  ( ph  ->  X  e.  V )
unisalgen.s  |-  S  =  (SalGen `  X )
unisalgen.u  |-  U  = 
U. X
Assertion
Ref Expression
unisalgen  |-  ( ph  ->  U  e.  S )

Proof of Theorem unisalgen
StepHypRef Expression
1 unisalgen.x . . . 4  |-  ( ph  ->  X  e.  V )
2 unisalgen.s . . . 4  |-  S  =  (SalGen `  X )
3 unisalgen.u . . . 4  |-  U  = 
U. X
41, 2, 3salgenuni 40555 . . 3  |-  ( ph  ->  U. S  =  U )
54eqcomd 2628 . 2  |-  ( ph  ->  U  =  U. S
)
62a1i 11 . . . 4  |-  ( ph  ->  S  =  (SalGen `  X ) )
7 salgencl 40550 . . . . 5  |-  ( X  e.  V  ->  (SalGen `  X )  e. SAlg )
81, 7syl 17 . . . 4  |-  ( ph  ->  (SalGen `  X )  e. SAlg )
96, 8eqeltrd 2701 . . 3  |-  ( ph  ->  S  e. SAlg )
10 saluni 40544 . . 3  |-  ( S  e. SAlg  ->  U. S  e.  S
)
119, 10syl 17 . 2  |-  ( ph  ->  U. S  e.  S
)
125, 11eqeltrd 2701 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   U.cuni 4436   ` cfv 5888  SAlgcsalg 40528  SalGencsalgen 40532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-salg 40529  df-salgen 40533
This theorem is referenced by:  salgensscntex  40562
  Copyright terms: Public domain W3C validator