| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenuni | Structured version Visualization version Unicode version | ||
| Description: The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgenuni.x |
|
| salgenuni.s |
|
| salgenuni.u |
|
| Ref | Expression |
|---|---|
| salgenuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgenuni.s |
. . . . 5
| |
| 2 | 1 | a1i 11 |
. . . 4
|
| 3 | salgenuni.x |
. . . . 5
| |
| 4 | salgenval 40541 |
. . . . 5
| |
| 5 | 3, 4 | syl 17 |
. . . 4
|
| 6 | 2, 5 | eqtrd 2656 |
. . 3
|
| 7 | 6 | unieqd 4446 |
. 2
|
| 8 | ssrab2 3687 |
. . . 4
| |
| 9 | 8 | a1i 11 |
. . 3
|
| 10 | salgenn0 40549 |
. . . 4
| |
| 11 | 3, 10 | syl 17 |
. . 3
|
| 12 | unieq 4444 |
. . . . . . . . . 10
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . . . . 9
|
| 14 | sseq2 3627 |
. . . . . . . . 9
| |
| 15 | 13, 14 | anbi12d 747 |
. . . . . . . 8
|
| 16 | 15 | elrab 3363 |
. . . . . . 7
|
| 17 | 16 | biimpi 206 |
. . . . . 6
|
| 18 | 17 | simprld 795 |
. . . . 5
|
| 19 | salgenuni.u |
. . . . . . 7
| |
| 20 | 19 | eqcomi 2631 |
. . . . . 6
|
| 21 | 20 | a1i 11 |
. . . . 5
|
| 22 | 18, 21 | eqtrd 2656 |
. . . 4
|
| 23 | 22 | adantl 482 |
. . 3
|
| 24 | 9, 11, 23 | intsaluni 40547 |
. 2
|
| 25 | 7, 24 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-salg 40529 df-salgen 40533 |
| This theorem is referenced by: unisalgen 40558 dfsalgen2 40559 |
| Copyright terms: Public domain | W3C validator |