HomeHome Metamath Proof Explorer
Theorem List (p. 406 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 40501-40600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.32.18  n-dimensional Euclidean space
 
Theoremrrxtopn 40501* The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  V )   =>    |-  ( ph  ->  ( TopOpen `  (ℝ^ `  I )
 )  =  ( MetOpen `  ( f  e.  ( Base `  (ℝ^ `  I
 ) ) ,  g  e.  ( Base `  (ℝ^ `  I
 ) )  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f `
  x )  -  ( g `  x ) ) ^ 2
 ) ) ) ) ) ) )
 
Theoremrrxngp 40502 Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( I  e.  V  ->  (ℝ^ `  I )  e. NrmGrp )
 
Theoremrrxbasefi 40503 The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of  ( RR  ^m  X ) for the development of the Lebeasgue measure theory for n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  H  =  (ℝ^ `  X )   &    |-  B  =  ( Base `  H )   =>    |-  ( ph  ->  B  =  ( RR  ^m  X ) )
 
Theoremrrxtps 40504 Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( I  e.  V  ->  (ℝ^ `  I )  e.  TopSp )
 
Theoremrrxdsfi 40505* The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  H  =  (ℝ^ `  I )   &    |-  B  =  ( RR  ^m  I
 )   =>    |-  ( I  e.  Fin  ->  ( dist `  H )  =  ( f  e.  B ,  g  e.  B  |->  ( sqr `  sum_ k  e.  I  ( ( ( f `  k )  -  ( g `  k ) ) ^
 2 ) ) ) )
 
Theoremrrxtopnfi 40506* The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   =>    |-  ( ph  ->  ( TopOpen `  (ℝ^ `  I )
 )  =  ( MetOpen `  ( f  e.  ( RR  ^m  I ) ,  g  e.  ( RR 
 ^m  I )  |->  ( sqr `  sum_ k  e.  I  ( ( ( f `  k )  -  ( g `  k ) ) ^
 2 ) ) ) ) )
 
Theoremrrxmetfi 40507 Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  D  =  ( dist `  (ℝ^ `  I
 ) )   =>    |-  ( I  e.  Fin  ->  D  e.  ( Met `  ( RR  ^m  I
 ) ) )
 
Theoremrrxtopon 40508 The topology on Generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  J  =  ( TopOpen `  (ℝ^ `  I
 ) )   =>    |-  ( I  e.  V  ->  J  e.  (TopOn `  ( Base `  (ℝ^ `  I
 ) ) ) )
 
Theoremrrxtop 40509 The topology on Generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  J  =  ( TopOpen `  (ℝ^ `  I
 ) )   =>    |-  ( I  e.  V  ->  J  e.  Top )
 
Theoremrrndistlt 40510* Given two points in the space of n-dimensional real numbers, if every component is closer than  E then the distance between the two points is less then  ( ( sqr `  n )  x.  E
) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  I  =/= 
 (/) )   &    |-  N  =  ( # `  I )   &    |-  ( ph  ->  X  e.  ( RR  ^m  I ) )   &    |-  ( ph  ->  Y  e.  ( RR  ^m  I ) )   &    |-  ( ( ph  /\  i  e.  I ) 
 ->  ( abs `  (
 ( X `  i
 )  -  ( Y `
  i ) ) )  <  E )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  D  =  (
 dist `  (ℝ^ `  I
 ) )   =>    |-  ( ph  ->  ( X D Y )  < 
 ( ( sqr `  N )  x.  E ) )
 
Theoremrrxtoponfi 40511 The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  J  =  ( TopOpen `  (ℝ^ `  I
 ) )   =>    |-  ( I  e.  Fin  ->  J  e.  (TopOn `  ( RR  ^m  I ) ) )
 
Theoremrrxunitopnfi 40512 The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( X  e.  Fin  ->  U. ( TopOpen `  (ℝ^ `  X )
 )  =  ( RR 
 ^m  X ) )
 
Theoremrrxtopn0 40513 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( TopOpen `  (ℝ^ `  (/) ) )  =  ~P { (/) }
 
Theoremqndenserrnbllem 40514* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  I  =/= 
 (/) )   &    |-  ( ph  ->  X  e.  ( RR  ^m  I ) )   &    |-  D  =  ( dist `  (ℝ^ `  I
 ) )   &    |-  ( ph  ->  E  e.  RR+ )   =>    |-  ( ph  ->  E. y  e.  ( QQ  ^m  I
 ) y  e.  ( X ( ball `  D ) E ) )
 
Theoremqndenserrnbl 40515* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  X  e.  ( RR  ^m  I
 ) )   &    |-  D  =  (
 dist `  (ℝ^ `  I
 ) )   &    |-  ( ph  ->  E  e.  RR+ )   =>    |-  ( ph  ->  E. y  e.  ( QQ  ^m  I
 ) y  e.  ( X ( ball `  D ) E ) )
 
Theoremrrxtopn0b 40516 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( TopOpen `  (ℝ^ `  (/) ) )  =  { (/) ,  { (/)
 } }
 
Theoremqndenserrnopnlem 40517* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   &    |-  J  =  ( TopOpen `  (ℝ^ `  I ) )   &    |-  ( ph  ->  V  e.  J )   &    |-  ( ph  ->  X  e.  V )   &    |-  D  =  ( dist `  (ℝ^ `  I
 ) )   =>    |-  ( ph  ->  E. y  e.  ( QQ  ^m  I
 ) y  e.  V )
 
Theoremqndenserrnopn 40518* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   &    |-  J  =  ( TopOpen `  (ℝ^ `  I ) )   &    |-  ( ph  ->  V  e.  J )   &    |-  ( ph  ->  V  =/=  (/) )   =>    |-  ( ph  ->  E. y  e.  ( QQ  ^m  I
 ) y  e.  V )
 
Theoremqndenserrn 40519 n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  I  e.  Fin )   &    |-  J  =  ( TopOpen `  (ℝ^ `  I ) )   =>    |-  ( ph  ->  ( ( cls `  J ) `  ( QQ  ^m  I ) )  =  ( RR 
 ^m  I ) )
 
Theoremrrxsnicc 40520* A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  A  e.  ( RR  ^m  X ) )   =>    |-  ( ph  ->  X_ k  e.  X  ( ( A `
  k ) [,] ( A `  k
 ) )  =  { A } )
 
Theoremrrnprjdstle 40521 The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  F : X --> RR )   &    |-  ( ph  ->  G : X --> RR )   &    |-  ( ph  ->  I  e.  X )   &    |-  D  =  ( dist `  (ℝ^ `  X ) )   =>    |-  ( ph  ->  ( abs `  ( ( F `
  I )  -  ( G `  I ) ) )  <_  ( F D G ) )
 
Theoremrrndsmet 40522*  D is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  D  =  ( f  e.  ( RR  ^m  X ) ,  g  e.  ( RR  ^m  X )  |->  ( sqr `  sum_ k  e.  X  ( ( ( f `  k )  -  ( g `  k ) ) ^
 2 ) ) )   =>    |-  ( ph  ->  D  e.  ( Met `  ( RR  ^m  X ) ) )
 
Theoremrrndsxmet 40523*  D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  D  =  ( f  e.  ( RR  ^m  X ) ,  g  e.  ( RR  ^m  X )  |->  ( sqr `  sum_ k  e.  X  ( ( ( f `  k )  -  ( g `  k ) ) ^
 2 ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  ( RR  ^m  X ) ) )
 
Theoremioorrnopnlem 40524* The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  X  =/= 
 (/) )   &    |-  ( ph  ->  A : X --> RR )   &    |-  ( ph  ->  B : X --> RR )   &    |-  ( ph  ->  F  e.  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i ) ) )   &    |-  H  =  ran  ( i  e.  X  |->  if ( ( ( B `
  i )  -  ( F `  i ) )  <_  ( ( F `  i )  -  ( A `  i ) ) ,  ( ( B `  i )  -  ( F `  i ) ) ,  ( ( F `  i )  -  ( A `  i ) ) ) )   &    |-  E  = inf ( H ,  RR ,  <  )   &    |-  V  =  ( F ( ball `  D ) E )   &    |-  D  =  ( f  e.  ( RR 
 ^m  X ) ,  g  e.  ( RR 
 ^m  X )  |->  ( sqr `  sum_ k  e.  X  ( ( ( f `  k )  -  ( g `  k ) ) ^
 2 ) ) )   =>    |-  ( ph  ->  E. v  e.  ( TopOpen `  (ℝ^ `  X ) ) ( F  e.  v  /\  v  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i ) ) ) )
 
Theoremioorrnopn 40525* The indexed product of open intervals is an open set in  (ℝ^ `  X
). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  A : X --> RR )   &    |-  ( ph  ->  B : X --> RR )   =>    |-  ( ph  ->  X_ i  e.  X  ( ( A `
  i ) (,) ( B `  i
 ) )  e.  ( TopOpen `  (ℝ^ `  X )
 ) )
 
Theoremioorrnopnxrlem 40526* Given a point  F that belongs to an indexed product of (possibly unbounded) open intervals, then  F belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  A : X --> RR* )   &    |-  ( ph  ->  B : X --> RR* )   &    |-  ( ph  ->  F  e.  X_ i  e.  X  (
 ( A `  i
 ) (,) ( B `  i ) ) )   &    |-  L  =  ( i  e.  X  |->  if ( ( A `
  i )  = -oo ,  ( ( F `
  i )  -  1 ) ,  ( A `  i ) ) )   &    |-  R  =  ( i  e.  X  |->  if ( ( B `  i )  = +oo ,  ( ( F `  i )  +  1
 ) ,  ( B `
  i ) ) )   &    |-  V  =  X_ i  e.  X  (
 ( L `  i
 ) (,) ( R `  i ) )   =>    |-  ( ph  ->  E. v  e.  ( TopOpen `  (ℝ^ `  X ) ) ( F  e.  v  /\  v  C_  X_ i  e.  X  ( ( A `
  i ) (,) ( B `  i
 ) ) ) )
 
Theoremioorrnopnxr 40527* The indexed product of open intervals is an open set in  (ℝ^ `  X
). Similar to ioorrnopn 40525 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  A : X --> RR* )   &    |-  ( ph  ->  B : X --> RR* )   =>    |-  ( ph  ->  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i ) )  e.  ( TopOpen `  (ℝ^ `  X ) ) )
 
20.32.19  Basic measure theory
 
20.32.19.1  σ-Algebras

Proofs for most of the theorems in section 111 of [Fremlin1]

 
Syntaxcsalg 40528 Extend class notation with the class of all sigma-algebras.
 class SAlg
 
Definitiondf-salg 40529* Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |- SAlg  =  { x  |  ( (/)  e.  x  /\  A. y  e.  x  ( U. x  \  y
 )  e.  x  /\  A. y  e.  ~P  x ( y  ~<_  om  ->  U. y  e.  x ) ) }
 
Syntaxcsalon 40530 Extend class notation with the class of sigma-algebras on a set.
 class SalOn
 
Definitiondf-salon 40531* Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |- SalOn  =  ( x  e.  _V  |->  { s  e. SAlg  |  U. s  =  x } )
 
Syntaxcsalgen 40532 Extend class notation with the class of sigma-algebra generator.
 class SalGen
 
Definitiondf-salgen 40533* Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 40559. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 40561. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.)
 |- SalGen  =  ( x  e.  _V  |->  |^| { s  e. SAlg  |  ( U. s  =  U. x  /\  x  C_  s
 ) } )
 
Theoremissal 40534* Express the predicate " S is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( S  e.  V  ->  ( S  e. SAlg  <->  ( (/)  e.  S  /\  A. y  e.  S  ( U. S  \  y
 )  e.  S  /\  A. y  e.  ~P  S ( y  ~<_  om  ->  U. y  e.  S ) ) ) )
 
Theorempwsal 40535 The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( X  e.  V  ->  ~P X  e. SAlg )
 
Theoremsalunicl 40536 SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  T  e.  ~P S )   &    |-  ( ph  ->  T  ~<_ 
 om )   =>    |-  ( ph  ->  U. T  e.  S )
 
Theoremsaluncl 40537 The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( S  e. SAlg  /\  E  e.  S  /\  F  e.  S )  ->  ( E  u.  F )  e.  S )
 
Theoremprsal 40538 The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( X  e.  V  ->  { (/) ,  X }  e. SAlg )
 
Theoremsaldifcl 40539 The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( S  e. SAlg  /\  E  e.  S )  ->  ( U. S  \  E )  e.  S )
 
Theorem0sal 40540 The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( S  e. SAlg  ->  (/)  e.  S )
 
Theoremsalgenval 40541* The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( X  e.  V  ->  (SalGen `  X )  =  |^| { s  e. SAlg  |  ( U. s  =  U. X  /\  X  C_  s
 ) } )
 
Theoremsaliuncl 40542* SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  K  ~<_  om )   &    |-  (
 ( ph  /\  k  e.  K )  ->  E  e.  S )   =>    |-  ( ph  ->  U_ k  e.  K  E  e.  S )
 
Theoremsalincl 40543 The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( S  e. SAlg  /\  E  e.  S  /\  F  e.  S )  ->  ( E  i^i  F )  e.  S )
 
Theoremsaluni 40544 A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( S  e. SAlg  ->  U. S  e.  S )
 
Theoremsaliincl 40545* SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  K  ~<_  om )   &    |-  ( ph  ->  K  =/=  (/) )   &    |-  (
 ( ph  /\  k  e.  K )  ->  E  e.  S )   =>    |-  ( ph  ->  |^|_ k  e.  K  E  e.  S )
 
Theoremsaldifcl2 40546 The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( S  e. SAlg  /\  E  e.  S  /\  F  e.  S )  ->  ( E 
 \  F )  e.  S )
 
Theoremintsaluni 40547* The union of an arbitrary intersection of sigma-algebras on the same set  X, is  X. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  G  C_ SAlg )   &    |-  ( ph  ->  G  =/=  (/) )   &    |-  (
 ( ph  /\  s  e.  G )  ->  U. s  =  X )   =>    |-  ( ph  ->  U. |^| G  =  X )
 
Theoremintsal 40548* The arbitrary intersection of sigma-algebra (on the same set  X) is a sigma-algebra ( on the same set  X, see intsaluni 40547). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  G  C_ SAlg )   &    |-  ( ph  ->  G  =/=  (/) )   &    |-  (
 ( ph  /\  s  e.  G )  ->  U. s  =  X )   =>    |-  ( ph  ->  |^| G  e. SAlg )
 
Theoremsalgenn0 40549* The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( X  e.  V  ->  { s  e. SAlg  |  ( U. s  =  U. X  /\  X  C_  s
 ) }  =/=  (/) )
 
Theoremsalgencl 40550 SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( X  e.  V  ->  (SalGen `  X )  e. SAlg )
 
Theoremissald 40551* Sufficient condition to prove that 
S is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  (/)  e.  S )   &    |-  X  =  U. S   &    |-  (
 ( ph  /\  y  e.  S )  ->  ( X  \  y )  e.  S )   &    |-  ( ( ph  /\  y  e.  ~P S  /\  y  ~<_  om )  ->  U. y  e.  S )   =>    |-  ( ph  ->  S  e. SAlg )
 
Theoremsalexct 40552* An example of non trivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  S  =  { x  e.  ~P A  |  ( x  ~<_  om  \/  ( A  \  x )  ~<_  om ) }   =>    |-  ( ph  ->  S  e. SAlg )
 
Theoremsssalgen 40553 A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  S  =  (SalGen `  X )   =>    |-  ( X  e.  V  ->  X 
 C_  S )
 
Theoremsalgenss 40554 The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 40562, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  X  e.  V )   &    |-  G  =  (SalGen `  X )   &    |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  U. S  =  U. X )   =>    |-  ( ph  ->  G  C_  S )
 
Theoremsalgenuni 40555 The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  X  e.  V )   &    |-  S  =  (SalGen `  X )   &    |-  U  =  U. X   =>    |-  ( ph  ->  U. S  =  U )
 
Theoremissalgend 40556* One side of dfsalgen2 40559. If a sigma-algebra on  U. X includes  X and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by  X. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  U. S  =  U. X )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ( ph  /\  ( y  e. SAlg  /\  U. y  =  U. X  /\  X  C_  y ) ) 
 ->  S  C_  y )   =>    |-  ( ph  ->  (SalGen `  X )  =  S )
 
Theoremsalexct2 40557* An example of a subset that does not belong to a non trivial sigma-algebra, see salexct 40552. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  A  =  ( 0 [,] 2
 )   &    |-  S  =  { x  e.  ~P A  |  ( x  ~<_  om  \/  ( A  \  x )  ~<_  om ) }   &    |-  B  =  ( 0 [,] 1 )   =>    |-  -.  B  e.  S
 
Theoremunisalgen 40558 The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  X  e.  V )   &    |-  S  =  (SalGen `  X )   &    |-  U  =  U. X   =>    |-  ( ph  ->  U  e.  S )
 
Theoremdfsalgen2 40559* Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 (SalGen `  X )  =  S  <->  ( ( S  e. SAlg  /\  U. S  =  U. X  /\  X  C_  S )  /\  A. y  e. SAlg  ( ( U. y  =  U. X  /\  X  C_  y )  ->  S  C_  y ) ) ) )
 
Theoremsalexct3 40560* An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  A  =  ( 0 [,] 2
 )   &    |-  S  =  { x  e.  ~P A  |  ( x  ~<_  om  \/  ( A  \  x )  ~<_  om ) }   &    |-  X  =  ran  ( y  e.  (
 0 [,] 1 )  |->  { y } )   =>    |-  ( S  e. SAlg  /\  X  C_  S  /\  -. 
 U. X  e.  S )
 
Theoremsalgencntex 40561* This counterexample shows that df-salgen 40533 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  A  =  ( 0 [,] 2
 )   &    |-  S  =  { x  e.  ~P A  |  ( x  ~<_  om  \/  ( A  \  x )  ~<_  om ) }   &    |-  B  =  ( 0 [,] 1 )   &    |-  T  =  ~P B   &    |-  C  =  ( S  i^i  T )   &    |-  Z  =  |^| { s  e. SAlg  |  C  C_  s }   =>    |- 
 -.  Z  e. SAlg
 
Theoremsalgensscntex 40562* This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  A  =  ( 0 [,] 2
 )   &    |-  S  =  { x  e.  ~P A  |  ( x  ~<_  om  \/  ( A  \  x )  ~<_  om ) }   &    |-  X  =  ran  ( y  e.  (
 0 [,] 1 )  |->  { y } )   &    |-  G  =  (SalGen `  X )   =>    |-  ( X  C_  S  /\  S  e. SAlg  /\  -.  G  C_  S )
 
Theoremissalnnd 40563* Sufficient condition to prove that 
S is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  (/)  e.  S )   &    |-  X  =  U. S   &    |-  (
 ( ph  /\  y  e.  S )  ->  ( X  \  y )  e.  S )   &    |-  ( ( ph  /\  e : NN --> S ) 
 ->  U_ n  e.  NN  ( e `  n )  e.  S )   =>    |-  ( ph  ->  S  e. SAlg )
 
Theoremdmvolsal 40564 Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  dom  vol 
 e. SAlg
 
Theoremsaldifcld 40565 The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  E  e.  S )   =>    |-  ( ph  ->  ( U. S  \  E )  e.  S )
 
Theoremsaluncld 40566 The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  E  e.  S )   &    |-  ( ph  ->  F  e.  S )   =>    |-  ( ph  ->  ( E  u.  F )  e.  S )
 
Theoremsalgencld 40567 SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  X  e.  V )   &    |-  S  =  (SalGen `  X )   =>    |-  ( ph  ->  S  e. SAlg )
 
Theorem0sald 40568 The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   =>    |-  ( ph  ->  (/)  e.  S )
 
Theoremiooborel 40569 An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  J  =  ( topGen `  ran  (,) )   &    |-  B  =  (SalGen `  J )   =>    |-  ( A (,) C )  e.  B
 
Theoremsalincld 40570 The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  E  e.  S )   &    |-  ( ph  ->  F  e.  S )   =>    |-  ( ph  ->  ( E  i^i  F )  e.  S )
 
Theoremsalunid 40571 A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   =>    |-  ( ph  ->  U. S  e.  S )
 
Theoremunisalgen2 40572 The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  S  =  (SalGen `  A )   =>    |-  ( ph  ->  U. S  =  U. A )
 
Theorembor1sal 40573 The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  J  =  ( topGen `  ran  (,) )   &    |-  B  =  (SalGen `  J )   =>    |-  B  e. SAlg
 
Theoremiocborel 40574 A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  C  e.  RR )   &    |-  J  =  (
 topGen `  ran  (,) )   &    |-  B  =  (SalGen `  J )   =>    |-  ( ph  ->  ( A (,] C )  e.  B )
 
Theoremsubsaliuncllem 40575* A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ y ph   &    |-  ( ph  ->  S  e.  V )   &    |-  G  =  ( n  e.  NN  |->  { x  e.  S  |  ( F `  n )  =  ( x  i^i  D ) } )   &    |-  E  =  ( H  o.  G )   &    |-  ( ph  ->  H  Fn  ran  G )   &    |-  ( ph  ->  A. y  e.  ran  G ( H `  y
 )  e.  y )   =>    |-  ( ph  ->  E. e  e.  ( S  ^m  NN ) A. n  e.  NN  ( F `  n )  =  ( ( e `
  n )  i^i 
 D ) )
 
Theoremsubsaliuncl 40576* A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  D  e.  V )   &    |-  T  =  ( St  D )   &    |-  ( ph  ->  F : NN --> T )   =>    |-  ( ph  ->  U_ n  e. 
 NN  ( F `  n )  e.  T )
 
Theoremsubsalsal 40577 A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  D  e.  V )   &    |-  T  =  ( St  D )   =>    |-  ( ph  ->  T  e. SAlg )
 
Theoremsubsaluni 40578 A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  S  e. SAlg )   &    |-  ( ph  ->  A  C_  U. S )   =>    |-  ( ph  ->  A  e.  ( St  A ) )
 
20.32.19.2  Sum of nonnegative extended reals
 
Syntaxcsumge0 40579 Extend class notation to include the sum of nonnegative extended reals.
 class Σ^
 
Definitiondf-sumge0 40580* Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $.
 |- Σ^ 
 =  ( x  e. 
 _V  |->  if ( +oo  e.  ran 
 x , +oo ,  sup ( ran  ( y  e.  ( ~P dom  x  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w ) ) , 
 RR* ,  <  ) ) )
 
Theoremsge0rnre 40581* When Σ^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )   =>    |-  ( ph  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  C_  RR )
 
Theoremfge0icoicc 40582 If  F maps to nonnegative reals, then  F maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )   =>    |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
 
Theoremsge0val 40583* The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  (Σ^ `  F )  =  if ( +oo  e.  ran  F , +oo ,  sup ( ran  ( y  e.  ( ~P X  i^i  Fin )  |-> 
 sum_ w  e.  y  ( F `  w ) ) ,  RR* ,  <  ) ) )
 
Theoremfge0npnf 40584 If  F maps to nonnegative reals, then +oo is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )   =>    |-  ( ph  ->  -. +oo  e.  ran  F )
 
Theoremsge0rnn0 40585* The range used in the definition of Σ^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
 sum_ y  e.  x  ( F `  y ) )  =/=  (/)
 
Theoremsge0vald 40586* The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   =>    |-  ( ph  ->  (Σ^ `  F )  =  if ( +oo  e.  ran  F , +oo ,  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
 sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) ) )
 
Theoremfge0iccico 40587 A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   &    |-  ( ph  ->  -. +oo  e.  ran  F )   =>    |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )
 
Theoremgsumge0cl 40588 Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  G  =  ( RR*ss  ( 0 [,] +oo ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   &    |-  ( ph  ->  F finSupp 
 0 )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  (
 0 [,] +oo ) )
 
Theoremsge0reval 40589* Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )   =>    |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
 sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
 
Theoremsge0pnfval 40590 If a term in the sum of nonnegative extended reals is +oo, then the value of the sum is +oo. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   &    |-  ( ph  -> +oo 
 e.  ran  F )   =>    |-  ( ph  ->  (Σ^ `  F )  = +oo )
 
Theoremfge0iccre 40591 A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   &    |-  ( ph  ->  -. +oo  e.  ran  F )   =>    |-  ( ph  ->  F : X --> RR )
 
Theoremsge0z 40592* Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  (Σ^ `  (
 k  e.  A  |->  0 ) )  =  0 )
 
Theoremsge00 40593 The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (Σ^ `  (/) )  =  0
 
Theoremfsumlesge0 40594* Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  ( ph  ->  Y  e.  Fin )   =>    |-  ( ph  ->  sum_ x  e.  Y  ( F `  x )  <_  (Σ^ `  F ) )
 
Theoremsge0revalmpt 40595* Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  F/ x ph   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  ->  (Σ^ `  ( x  e.  A  |->  B ) )  =  sup ( ran  ( y  e.  ( ~P A  i^i  Fin )  |-> 
 sum_ x  e.  y  B ) ,  RR* ,  <  ) )
 
Theoremsge0sn 40596 A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : { A } --> ( 0 [,] +oo ) )   =>    |-  ( ph  ->  (Σ^ `  F )  =  ( F `  A ) )
 
Theoremsge0tsms 40597 Σ^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  G  =  ( RR*ss  ( 0 [,] +oo ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   =>    |-  ( ph  ->  (Σ^ `  F )  e.  ( G tsums  F ) )
 
Theoremsge0cl 40598 The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )   =>    |-  ( ph  ->  (Σ^ `  F )  e.  ( 0 [,] +oo ) )
 
Theoremsge0f1o 40599* Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  F/ k ph   &    |-  F/ n ph   &    |-  (
 k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  ->  (Σ^ `  (
 k  e.  A  |->  B ) )  =  (Σ^ `  ( n  e.  C  |->  D ) ) )
 
Theoremsge0snmpt 40600* A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  ( 0 [,] +oo ) )   &    |-  ( k  =  A  ->  B  =  C )   =>    |-  ( ph  ->  (Σ^ `  (
 k  e.  { A }  |->  B ) )  =  C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >