MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim2 Structured version   Visualization version   Unicode version

Theorem rankxplim2 8743
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )

Proof of Theorem rankxplim2
StepHypRef Expression
1 0ellim 5787 . . . 4  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  (/)  e.  ( rank `  ( A  X.  B
) ) )
2 n0i 3920 . . . 4  |-  ( (/)  e.  ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
31, 2syl 17 . . 3  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
4 df-ne 2795 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( A  X.  B )  =  (/) )
5 rankxplim.1 . . . . . . 7  |-  A  e. 
_V
6 rankxplim.2 . . . . . . 7  |-  B  e. 
_V
75, 6xpex 6962 . . . . . 6  |-  ( A  X.  B )  e. 
_V
87rankeq0 8724 . . . . 5  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
98notbii 310 . . . 4  |-  ( -.  ( A  X.  B
)  =  (/)  <->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
104, 9bitr2i 265 . . 3  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  <->  ( A  X.  B )  =/=  (/) )
113, 10sylib 208 . 2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  ( A  X.  B )  =/=  (/) )
12 limuni2 5786 . . . 4  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. ( rank `  ( A  X.  B ) ) )
13 limuni2 5786 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  Lim  U. U. ( rank `  ( A  X.  B ) ) )
1412, 13syl 17 . . 3  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. U. ( rank `  ( A  X.  B ) ) )
15 rankuni 8726 . . . . . 6  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
16 rankuni 8726 . . . . . . 7  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
1716unieqi 4445 . . . . . 6  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
1815, 17eqtr2i 2645 . . . . 5  |-  U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  U. U. ( A  X.  B
) )
19 unixp 5668 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
2019fveq2d 6195 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank ` 
U. U. ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
2118, 20syl5eq 2668 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
22 limeq 5735 . . . 4  |-  ( U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
)  ->  ( Lim  U.
U. ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
2321, 22syl 17 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  ( Lim  U.
U. ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
2414, 23syl5ib 234 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B )
) ) )
2511, 24mpcom 38 1  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572   (/)c0 3915   U.cuni 4436    X. cxp 5112   Lim wlim 5724   ` cfv 5888   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankxpsuc  8745
  Copyright terms: Public domain W3C validator