MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lem Structured version   Visualization version   Unicode version

Theorem cnfcom2lem 8598
Description: Lemma for cnfcom2 8599. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s  |-  S  =  dom  ( om CNF  A
)
cnfcom.a  |-  ( ph  ->  A  e.  On )
cnfcom.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcom.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcom.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cnfcom.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom.w  |-  W  =  ( G `  U. dom  G )
cnfcom2.1  |-  ( ph  -> 
(/)  e.  B )
Assertion
Ref Expression
cnfcom2lem  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
Distinct variable groups:    x, k,
z, A    x, M    f, k, x, z, F   
z, T    x, W    f, G, k, x, z   
f, H, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, f, k)    W( z, f, k)

Proof of Theorem cnfcom2lem
StepHypRef Expression
1 cnfcom2.1 . . . . . 6  |-  ( ph  -> 
(/)  e.  B )
2 n0i 3920 . . . . . 6  |-  ( (/)  e.  B  ->  -.  B  =  (/) )
31, 2syl 17 . . . . 5  |-  ( ph  ->  -.  B  =  (/) )
4 cnfcom.f . . . . . . . . . . . . . 14  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcom.s . . . . . . . . . . . . . . . . 17  |-  S  =  dom  ( om CNF  A
)
6 omelon 8543 . . . . . . . . . . . . . . . . . 18  |-  om  e.  On
76a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  om  e.  On )
8 cnfcom.a . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  On )
95, 7, 8cantnff1o 8593 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
10 f1ocnv 6149 . . . . . . . . . . . . . . . 16  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
11 f1of 6137 . . . . . . . . . . . . . . . 16  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
129, 10, 113syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
13 cnfcom.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
1412, 13ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
154, 14syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  S )
165, 7, 8cantnfs 8563 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  S  <->  ( F : A --> om  /\  F finSupp 
(/) ) ) )
1715, 16mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> om  /\  F finSupp  (/) ) )
1817simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> om )
1918adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F : A
--> om )
2019feqmptd 6249 . . . . . . . . 9  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F  =  ( x  e.  A  |->  ( F `  x
) ) )
21 dif0 3950 . . . . . . . . . . . 12  |-  ( A 
\  (/) )  =  A
2221eleq2i 2693 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  (/) )  <->  x  e.  A
)
23 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  dom  G  =  (/) )  ->  dom  G  =  (/) )
24 suppssdm 7308 . . . . . . . . . . . . . . . . . . . 20  |-  ( F supp  (/) )  C_  dom  F
25 fdm 6051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : A --> om  ->  dom 
F  =  A )
2618, 25syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  F  =  A )
2724, 26syl5sseq 3653 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F supp  (/) )  C_  A )
288, 27ssexd 4805 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F supp  (/) )  e. 
_V )
29 cnfcom.g . . . . . . . . . . . . . . . . . . . 20  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
305, 7, 8, 29, 15cantnfcl 8564 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom  G  e.  om ) )
3130simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  _E  We  ( F supp  (/) ) )
3229oien 8443 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F supp  (/) )  e. 
_V  /\  _E  We  ( F supp  (/) ) )  ->  dom  G  ~~  ( F supp  (/) ) )
3328, 31, 32syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  G  ~~  ( F supp 
(/) ) )
3433adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  dom  G  =  (/) )  ->  dom  G  ~~  ( F supp  (/) ) )
3523, 34eqbrtrrd 4677 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  dom  G  =  (/) )  ->  (/)  ~~  ( F supp 
(/) ) )
3635ensymd 8007 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( F supp  (/) )  ~~  (/) )
37 en0 8019 . . . . . . . . . . . . . 14  |-  ( ( F supp  (/) )  ~~  (/)  <->  ( F supp  (/) )  =  (/) )
3836, 37sylib 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( F supp  (/) )  =  (/) )
39 ss0b 3973 . . . . . . . . . . . . 13  |-  ( ( F supp  (/) )  C_  (/)  <->  ( F supp  (/) )  =  (/) )
4038, 39sylibr 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( F supp  (/) )  C_  (/) )
418adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  dom  G  =  (/) )  ->  A  e.  On )
42 0ex 4790 . . . . . . . . . . . . 13  |-  (/)  e.  _V
4342a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  dom  G  =  (/) )  ->  (/)  e.  _V )
4419, 40, 41, 43suppssr 7326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  dom  G  =  (/) )  /\  x  e.  ( A  \  (/) ) )  ->  ( F `  x )  =  (/) )
4522, 44sylan2br 493 . . . . . . . . . 10  |-  ( ( ( ph  /\  dom  G  =  (/) )  /\  x  e.  A )  ->  ( F `  x )  =  (/) )
4645mpteq2dva 4744 . . . . . . . . 9  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  (/) ) )
4720, 46eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F  =  ( x  e.  A  |->  (/) ) )
48 fconstmpt 5163 . . . . . . . 8  |-  ( A  X.  { (/) } )  =  ( x  e.  A  |->  (/) )
4947, 48syl6eqr 2674 . . . . . . 7  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F  =  ( A  X.  { (/)
} ) )
5049fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( A  X.  { (/)
} ) ) )
514fveq2i 6194 . . . . . . . 8  |-  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( `' ( om CNF 
A ) `  B
) )
52 f1ocnvfv2 6533 . . . . . . . . 9  |-  ( ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  /\  B  e.  ( om  ^o  A ) )  ->  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
)  =  B )
539, 13, 52syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( om CNF  A
) `  ( `' ( om CNF  A ) `  B ) )  =  B )
5451, 53syl5eq 2668 . . . . . . 7  |-  ( ph  ->  ( ( om CNF  A
) `  F )  =  B )
5554adantr 481 . . . . . 6  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( ( om CNF  A ) `  F )  =  B )
56 peano1 7085 . . . . . . . . 9  |-  (/)  e.  om
5756a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  om )
585, 7, 8, 57cantnf0 8572 . . . . . . 7  |-  ( ph  ->  ( ( om CNF  A
) `  ( A  X.  { (/) } ) )  =  (/) )
5958adantr 481 . . . . . 6  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( ( om CNF  A ) `  ( A  X.  { (/) } ) )  =  (/) )
6050, 55, 593eqtr3d 2664 . . . . 5  |-  ( (
ph  /\  dom  G  =  (/) )  ->  B  =  (/) )
613, 60mtand 691 . . . 4  |-  ( ph  ->  -.  dom  G  =  (/) )
6230simprd 479 . . . . 5  |-  ( ph  ->  dom  G  e.  om )
63 nnlim 7078 . . . . 5  |-  ( dom 
G  e.  om  ->  -. 
Lim  dom  G )
6462, 63syl 17 . . . 4  |-  ( ph  ->  -.  Lim  dom  G
)
65 ioran 511 . . . 4  |-  ( -.  ( dom  G  =  (/)  \/  Lim  dom  G
)  <->  ( -.  dom  G  =  (/)  /\  -.  Lim  dom 
G ) )
6661, 64, 65sylanbrc 698 . . 3  |-  ( ph  ->  -.  ( dom  G  =  (/)  \/  Lim  dom  G ) )
6729oicl 8434 . . . 4  |-  Ord  dom  G
68 unizlim 5844 . . . 4  |-  ( Ord 
dom  G  ->  ( dom 
G  =  U. dom  G  <-> 
( dom  G  =  (/) 
\/  Lim  dom  G ) ) )
6967, 68ax-mp 5 . . 3  |-  ( dom 
G  =  U. dom  G  <-> 
( dom  G  =  (/) 
\/  Lim  dom  G ) )
7066, 69sylnibr 319 . 2  |-  ( ph  ->  -.  dom  G  = 
U. dom  G )
71 orduniorsuc 7030 . . . 4  |-  ( Ord 
dom  G  ->  ( dom 
G  =  U. dom  G  \/  dom  G  =  suc  U. dom  G
) )
7267, 71mp1i 13 . . 3  |-  ( ph  ->  ( dom  G  = 
U. dom  G  \/  dom  G  =  suc  U. dom  G ) )
7372ord 392 . 2  |-  ( ph  ->  ( -.  dom  G  =  U. dom  G  ->  dom  G  =  suc  U. dom  G ) )
7470, 73mpd 15 1  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559    ~~ cen 7952   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom2  8599  cnfcom3lem  8600  cnfcom3  8601
  Copyright terms: Public domain W3C validator