MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Structured version   Visualization version   Unicode version

Theorem ordzsl 7045
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
Distinct variable group:    x, A

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 7043 . . . . . 6  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
21biimprd 238 . . . . 5  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  ->  A  =  U. A ) )
3 unizlim 5844 . . . . 5  |-  ( Ord 
A  ->  ( A  =  U. A  <->  ( A  =  (/)  \/  Lim  A
) ) )
42, 3sylibd 229 . . . 4  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  ->  ( A  =  (/)  \/  Lim  A ) ) )
54orrd 393 . . 3  |-  ( Ord 
A  ->  ( E. x  e.  On  A  =  suc  x  \/  ( A  =  (/)  \/  Lim  A ) ) )
6 3orass 1040 . . . 4  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A )  <->  ( A  =  (/)  \/  ( E. x  e.  On  A  =  suc  x  \/  Lim  A ) ) )
7 or12 545 . . . 4  |-  ( ( A  =  (/)  \/  ( E. x  e.  On  A  =  suc  x  \/ 
Lim  A ) )  <-> 
( E. x  e.  On  A  =  suc  x  \/  ( A  =  (/)  \/  Lim  A
) ) )
86, 7bitri 264 . . 3  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A )  <->  ( E. x  e.  On  A  =  suc  x  \/  ( A  =  (/)  \/  Lim  A
) ) )
95, 8sylibr 224 . 2  |-  ( Ord 
A  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
10 ord0 5777 . . . 4  |-  Ord  (/)
11 ordeq 5730 . . . 4  |-  ( A  =  (/)  ->  ( Ord 
A  <->  Ord  (/) ) )
1210, 11mpbiri 248 . . 3  |-  ( A  =  (/)  ->  Ord  A
)
13 suceloni 7013 . . . . . 6  |-  ( x  e.  On  ->  suc  x  e.  On )
14 eleq1 2689 . . . . . 6  |-  ( A  =  suc  x  -> 
( A  e.  On  <->  suc  x  e.  On ) )
1513, 14syl5ibr 236 . . . . 5  |-  ( A  =  suc  x  -> 
( x  e.  On  ->  A  e.  On ) )
16 eloni 5733 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
1715, 16syl6com 37 . . . 4  |-  ( x  e.  On  ->  ( A  =  suc  x  ->  Ord  A ) )
1817rexlimiv 3027 . . 3  |-  ( E. x  e.  On  A  =  suc  x  ->  Ord  A )
19 limord 5784 . . 3  |-  ( Lim 
A  ->  Ord  A )
2012, 18, 193jaoi 1391 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A )  ->  Ord  A )
219, 20impbii 199 1  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    \/ w3o 1036    = wceq 1483    e. wcel 1990   E.wrex 2913   (/)c0 3915   U.cuni 4436   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  onzsl  7046  tfrlem16  7489  omeulem1  7662  oaabs2  7725  rankxplim3  8744  rankxpsuc  8745  cardlim  8798  cardaleph  8912  cflim2  9085  dfrdg2  31701
  Copyright terms: Public domain W3C validator