MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   Unicode version

Theorem cantnfp1lem2 8576
Description: Lemma for cantnfp1 8578. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnfp1.g  |-  ( ph  ->  G  e.  S )
cantnfp1.x  |-  ( ph  ->  X  e.  B )
cantnfp1.y  |-  ( ph  ->  Y  e.  A )
cantnfp1.s  |-  ( ph  ->  ( G supp  (/) )  C_  X )
cantnfp1.f  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
cantnfp1.e  |-  ( ph  -> 
(/)  e.  Y )
cantnfp1.o  |-  O  = OrdIso
(  _E  ,  ( F supp  (/) ) )
Assertion
Ref Expression
cantnfp1lem2  |-  ( ph  ->  dom  O  =  suc  U.
dom  O )
Distinct variable groups:    t, B    t, A    t, S    t, G    ph, t    t, Y   
t, X
Allowed substitution hints:    F( t)    O( t)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
2 cantnfp1.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  A )
3 iftrue 4092 . . . . . . . . . 10  |-  ( t  =  X  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  =  Y )
4 cantnfp1.f . . . . . . . . . 10  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
53, 4fvmptg 6280 . . . . . . . . 9  |-  ( ( X  e.  B  /\  Y  e.  A )  ->  ( F `  X
)  =  Y )
61, 2, 5syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( F `  X
)  =  Y )
7 cantnfp1.e . . . . . . . . 9  |-  ( ph  -> 
(/)  e.  Y )
8 cantnfs.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  On )
9 onelon 5748 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  Y  e.  A )  ->  Y  e.  On )
108, 2, 9syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  On )
11 on0eln0 5780 . . . . . . . . . 10  |-  ( Y  e.  On  ->  ( (/) 
e.  Y  <->  Y  =/=  (/) ) )
1210, 11syl 17 . . . . . . . . 9  |-  ( ph  ->  ( (/)  e.  Y  <->  Y  =/=  (/) ) )
137, 12mpbid 222 . . . . . . . 8  |-  ( ph  ->  Y  =/=  (/) )
146, 13eqnetrd 2861 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  =/=  (/) )
152adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  B )  ->  Y  e.  A )
16 cantnfp1.g . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  S )
17 cantnfs.s . . . . . . . . . . . . . . 15  |-  S  =  dom  ( A CNF  B
)
18 cantnfs.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  On )
1917, 8, 18cantnfs 8563 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  G finSupp 
(/) ) ) )
2016, 19mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G : B --> A  /\  G finSupp  (/) ) )
2120simpld 475 . . . . . . . . . . . 12  |-  ( ph  ->  G : B --> A )
2221ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  B )  ->  ( G `  t )  e.  A )
2315, 22ifcld 4131 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  B )  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  e.  A )
2423, 4fmptd 6385 . . . . . . . . 9  |-  ( ph  ->  F : B --> A )
25 ffn 6045 . . . . . . . . 9  |-  ( F : B --> A  ->  F  Fn  B )
2624, 25syl 17 . . . . . . . 8  |-  ( ph  ->  F  Fn  B )
27 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
2827a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  _V )
29 elsuppfn 7303 . . . . . . . 8  |-  ( ( F  Fn  B  /\  B  e.  On  /\  (/)  e.  _V )  ->  ( X  e.  ( F supp  (/) )  <->  ( X  e.  B  /\  ( F `  X )  =/=  (/) ) ) )
3026, 18, 28, 29syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( X  e.  ( F supp  (/) )  <->  ( X  e.  B  /\  ( F `  X )  =/=  (/) ) ) )
311, 14, 30mpbir2and 957 . . . . . 6  |-  ( ph  ->  X  e.  ( F supp  (/) ) )
32 n0i 3920 . . . . . 6  |-  ( X  e.  ( F supp  (/) )  ->  -.  ( F supp  (/) )  =  (/) )
3331, 32syl 17 . . . . 5  |-  ( ph  ->  -.  ( F supp  (/) )  =  (/) )
34 suppssdm 7308 . . . . . . . . 9  |-  ( F supp  (/) )  C_  dom  F
354, 23dmmptd 6024 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  B )
3634, 35syl5sseq 3653 . . . . . . . 8  |-  ( ph  ->  ( F supp  (/) )  C_  B )
3718, 36ssexd 4805 . . . . . . 7  |-  ( ph  ->  ( F supp  (/) )  e. 
_V )
38 cantnfp1.o . . . . . . . . 9  |-  O  = OrdIso
(  _E  ,  ( F supp  (/) ) )
39 cantnfp1.s . . . . . . . . . 10  |-  ( ph  ->  ( G supp  (/) )  C_  X )
4017, 8, 18, 16, 1, 2, 39, 4cantnfp1lem1 8575 . . . . . . . . 9  |-  ( ph  ->  F  e.  S )
4117, 8, 18, 38, 40cantnfcl 8564 . . . . . . . 8  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom  O  e.  om ) )
4241simpld 475 . . . . . . 7  |-  ( ph  ->  _E  We  ( F supp  (/) ) )
4338oien 8443 . . . . . . 7  |-  ( ( ( F supp  (/) )  e. 
_V  /\  _E  We  ( F supp  (/) ) )  ->  dom  O  ~~  ( F supp  (/) ) )
4437, 42, 43syl2anc 693 . . . . . 6  |-  ( ph  ->  dom  O  ~~  ( F supp 
(/) ) )
45 breq1 4656 . . . . . . 7  |-  ( dom 
O  =  (/)  ->  ( dom  O  ~~  ( F supp  (/) )  <->  (/)  ~~  ( F supp  (/) ) ) )
46 ensymb 8004 . . . . . . . 8  |-  ( (/)  ~~  ( F supp  (/) )  <->  ( F supp  (/) )  ~~  (/) )
47 en0 8019 . . . . . . . 8  |-  ( ( F supp  (/) )  ~~  (/)  <->  ( F supp  (/) )  =  (/) )
4846, 47bitri 264 . . . . . . 7  |-  ( (/)  ~~  ( F supp  (/) )  <->  ( F supp  (/) )  =  (/) )
4945, 48syl6bb 276 . . . . . 6  |-  ( dom 
O  =  (/)  ->  ( dom  O  ~~  ( F supp  (/) )  <->  ( F supp  (/) )  =  (/) ) )
5044, 49syl5ibcom 235 . . . . 5  |-  ( ph  ->  ( dom  O  =  (/)  ->  ( F supp  (/) )  =  (/) ) )
5133, 50mtod 189 . . . 4  |-  ( ph  ->  -.  dom  O  =  (/) )
5241simprd 479 . . . . 5  |-  ( ph  ->  dom  O  e.  om )
53 nnlim 7078 . . . . 5  |-  ( dom 
O  e.  om  ->  -. 
Lim  dom  O )
5452, 53syl 17 . . . 4  |-  ( ph  ->  -.  Lim  dom  O
)
55 ioran 511 . . . 4  |-  ( -.  ( dom  O  =  (/)  \/  Lim  dom  O
)  <->  ( -.  dom  O  =  (/)  /\  -.  Lim  dom 
O ) )
5651, 54, 55sylanbrc 698 . . 3  |-  ( ph  ->  -.  ( dom  O  =  (/)  \/  Lim  dom  O ) )
57 nnord 7073 . . . 4  |-  ( dom 
O  e.  om  ->  Ord 
dom  O )
58 unizlim 5844 . . . 4  |-  ( Ord 
dom  O  ->  ( dom 
O  =  U. dom  O  <-> 
( dom  O  =  (/) 
\/  Lim  dom  O ) ) )
5952, 57, 583syl 18 . . 3  |-  ( ph  ->  ( dom  O  = 
U. dom  O  <->  ( dom  O  =  (/)  \/  Lim  dom 
O ) ) )
6056, 59mtbird 315 . 2  |-  ( ph  ->  -.  dom  O  = 
U. dom  O )
61 orduniorsuc 7030 . . . 4  |-  ( Ord 
dom  O  ->  ( dom 
O  =  U. dom  O  \/  dom  O  =  suc  U. dom  O
) )
6252, 57, 613syl 18 . . 3  |-  ( ph  ->  ( dom  O  = 
U. dom  O  \/  dom  O  =  suc  U. dom  O ) )
6362ord 392 . 2  |-  ( ph  ->  ( -.  dom  O  =  U. dom  O  ->  dom  O  =  suc  U. dom  O ) )
6460, 63mpd 15 1  |-  ( ph  ->  dom  O  =  suc  U.
dom  O )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    We wwe 5072   dom cdm 5114   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065   supp csupp 7295    ~~ cen 7952   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnfp1lem3  8577
  Copyright terms: Public domain W3C validator