MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onun2i Structured version   Visualization version   Unicode version

Theorem onun2i 5843
Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.)
Hypotheses
Ref Expression
on.1  |-  A  e.  On
on.2  |-  B  e.  On
Assertion
Ref Expression
onun2i  |-  ( A  u.  B )  e.  On

Proof of Theorem onun2i
StepHypRef Expression
1 on.2 . . . 4  |-  B  e.  On
21onordi 5832 . . 3  |-  Ord  B
3 on.1 . . . 4  |-  A  e.  On
43onordi 5832 . . 3  |-  Ord  A
5 ordtri2or 5822 . . 3  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  e.  A  \/  A  C_  B ) )
62, 4, 5mp2an 708 . 2  |-  ( B  e.  A  \/  A  C_  B )
73oneluni 5840 . . . 4  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )
87, 3syl6eqel 2709 . . 3  |-  ( B  e.  A  ->  ( A  u.  B )  e.  On )
9 ssequn1 3783 . . . 4  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
10 eleq1 2689 . . . . 5  |-  ( ( A  u.  B )  =  B  ->  (
( A  u.  B
)  e.  On  <->  B  e.  On ) )
111, 10mpbiri 248 . . . 4  |-  ( ( A  u.  B )  =  B  ->  ( A  u.  B )  e.  On )
129, 11sylbi 207 . . 3  |-  ( A 
C_  B  ->  ( A  u.  B )  e.  On )
138, 12jaoi 394 . 2  |-  ( ( B  e.  A  \/  A  C_  B )  -> 
( A  u.  B
)  e.  On )
146, 13ax-mp 5 1  |-  ( A  u.  B )  e.  On
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  rankunb  8713  rankelun  8735  rankelpr  8736  inar1  9597
  Copyright terms: Public domain W3C validator