MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssco Structured version   Visualization version   Unicode version

Theorem ustssco 22018
Description: In an uniform structure, any entourage  V is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.)
Assertion
Ref Expression
ustssco  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  V  C_  ( V  o.  V
) )

Proof of Theorem ustssco
StepHypRef Expression
1 ssun1 3776 . . . 4  |-  V  C_  ( V  u.  ( V  o.  V )
)
2 coires1 5653 . . . . . 6  |-  ( V  o.  (  _I  |`  X ) )  =  ( V  |`  X )
3 ustrel 22015 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  Rel  V )
4 ustssxp 22008 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  V  C_  ( X  X.  X
) )
5 dmss 5323 . . . . . . . . 9  |-  ( V 
C_  ( X  X.  X )  ->  dom  V 
C_  dom  ( X  X.  X ) )
64, 5syl 17 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  dom  V 
C_  dom  ( X  X.  X ) )
7 dmxpid 5345 . . . . . . . 8  |-  dom  ( X  X.  X )  =  X
86, 7syl6sseq 3651 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  dom  V 
C_  X )
9 relssres 5437 . . . . . . 7  |-  ( ( Rel  V  /\  dom  V 
C_  X )  -> 
( V  |`  X )  =  V )
103, 8, 9syl2anc 693 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  ( V  |`  X )  =  V )
112, 10syl5eq 2668 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  ( V  o.  (  _I  |`  X ) )  =  V )
1211uneq1d 3766 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  (
( V  o.  (  _I  |`  X ) )  u.  ( V  o.  V ) )  =  ( V  u.  ( V  o.  V )
) )
131, 12syl5sseqr 3654 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  V  C_  ( ( V  o.  (  _I  |`  X ) )  u.  ( V  o.  V ) ) )
14 coundi 5636 . . 3  |-  ( V  o.  ( (  _I  |`  X )  u.  V
) )  =  ( ( V  o.  (  _I  |`  X ) )  u.  ( V  o.  V ) )
1513, 14syl6sseqr 3652 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  V  C_  ( V  o.  (
(  _I  |`  X )  u.  V ) ) )
16 ustdiag 22012 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  (  _I  |`  X )  C_  V )
17 ssequn1 3783 . . . 4  |-  ( (  _I  |`  X )  C_  V  <->  ( (  _I  |`  X )  u.  V
)  =  V )
1816, 17sylib 208 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  (
(  _I  |`  X )  u.  V )  =  V )
1918coeq2d 5284 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  ( V  o.  ( (  _I  |`  X )  u.  V ) )  =  ( V  o.  V
) )
2015, 19sseqtrd 3641 1  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  V  C_  ( V  o.  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574    _I cid 5023    X. cxp 5112   dom cdm 5114    |` cres 5116    o. ccom 5118   Rel wrel 5119   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  ustexsym  22019  ustex3sym  22021
  Copyright terms: Public domain W3C validator