MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopreg Structured version   Visualization version   Unicode version

Theorem utopreg 22056
Description: All Hausdorff uniform spaces are regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Hypothesis
Ref Expression
utopreg.1  |-  J  =  (unifTop `  U )
Assertion
Ref Expression
utopreg  |-  ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  ->  J  e.  Reg )

Proof of Theorem utopreg
Dummy variables  a 
b  v  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopreg.1 . . 3  |-  J  =  (unifTop `  U )
2 utoptop 22038 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  e.  Top )
32adantr 481 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  ->  (unifTop `  U )  e.  Top )
41, 3syl5eqel 2705 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  ->  J  e.  Top )
5 simp-4l 806 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( (
( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a ) )
64ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  J  e.  Top )
75, 6syl 17 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  J  e.  Top )
8 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  w  e.  U )
9 simp-4l 806 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  U  e.  (UnifOn `  X )
)
10 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  w  e.  U )
114ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  J  e.  Top )
12 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  a  e.  J )
13 eqid 2622 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
1413eltopss 20712 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  a  e.  J )  ->  a  C_  U. J )
1511, 12, 14syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  a  C_ 
U. J )
16 utopbas 22039 . . . . . . . . . . . . . 14  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  U. (unifTop `  U )
)
171unieqi 4445 . . . . . . . . . . . . . 14  |-  U. J  =  U. (unifTop `  U
)
1816, 17syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  U. J )
199, 18syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  X  =  U. J )
2015, 19sseqtr4d 3642 . . . . . . . . . . 11  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  a  C_  X )
21 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  x  e.  a )
2220, 21sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  x  e.  X )
231utopsnnei 22053 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U  /\  x  e.  X )  ->  (
w " { x } )  e.  ( ( nei `  J
) `  { x } ) )
249, 10, 22, 23syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  w  e.  U )  ->  (
w " { x } )  e.  ( ( nei `  J
) `  { x } ) )
255, 8, 24syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( w " { x } )  e.  ( ( nei `  J ) `  {
x } ) )
26 neii2 20912 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( w " {
x } )  e.  ( ( nei `  J
) `  { x } ) )  ->  E. b  e.  J  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )
277, 25, 26syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  E. b  e.  J  ( {
x }  C_  b  /\  b  C_  ( w
" { x }
) ) )
28 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  { x }  C_  b )
29 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
3029snss 4316 . . . . . . . . . . 11  |-  ( x  e.  b  <->  { x }  C_  b )
3128, 30sylibr 224 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  x  e.  b )
327ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  J  e.  Top )
33 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  U  e.  (UnifOn `  X )
)
345, 33syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  U  e.  (UnifOn `  X ) )
3534ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  U  e.  (UnifOn `  X ) )
368ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  w  e.  U
)
37 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  a  e.  J )
386, 37, 14syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  a  C_ 
U. J )
3933, 18syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  X  =  U. J )
4038, 39sseqtr4d 3642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  a  C_  X )
41 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  x  e.  a )
4240, 41sseldd 3604 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  x  e.  X )
4342ad6antr 772 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  x  e.  X
)
44 ustimasn 22032 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U  /\  x  e.  X )  ->  (
w " { x } )  C_  X
)
4535, 36, 43, 44syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( w " { x } ) 
C_  X )
4635, 18syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  X  =  U. J )
4745, 46sseqtrd 3641 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( w " { x } ) 
C_  U. J )
48 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  b  C_  (
w " { x } ) )
4913clsss 20858 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( w " {
x } )  C_  U. J  /\  b  C_  ( w " {
x } ) )  ->  ( ( cls `  J ) `  b
)  C_  ( ( cls `  J ) `  ( w " {
x } ) ) )
5032, 47, 48, 49syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( ( cls `  J ) `  b
)  C_  ( ( cls `  J ) `  ( w " {
x } ) ) )
51 ustssxp 22008 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U )  ->  w  C_  ( X  X.  X
) )
5234, 8, 51syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  w  C_  ( X  X.  X ) )
5334, 18syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  X  =  U. J )
5453sqxpeqd 5141 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( X  X.  X )  =  ( U. J  X.  U. J ) )
5552, 54sseqtrd 3641 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  w  C_  ( U. J  X.  U. J
) )
565, 38syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  a  C_  U. J )
57 simp-5r 809 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  x  e.  a )
5856, 57sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  x  e.  U. J )
5913, 13imasncls 21495 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  J  e.  Top )  /\  ( w  C_  ( U. J  X.  U. J
)  /\  x  e.  U. J ) )  -> 
( ( cls `  J
) `  ( w " { x } ) )  C_  ( (
( cls `  ( J  tX  J ) ) `
 w ) " { x } ) )
607, 7, 55, 58, 59syl22anc 1327 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( ( cls `  J ) `  ( w " {
x } ) ) 
C_  ( ( ( cls `  ( J 
tX  J ) ) `
 w ) " { x } ) )
61 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  `' w  =  w )
621utop3cls 22055 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U  e.  (UnifOn `  X )  /\  w  C_  ( X  X.  X
) )  /\  (
w  e.  U  /\  `' w  =  w
) )  ->  (
( cls `  ( J  tX  J ) ) `
 w )  C_  ( w  o.  (
w  o.  w ) ) )
6334, 52, 8, 61, 62syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( ( cls `  ( J  tX  J ) ) `  w )  C_  (
w  o.  ( w  o.  w ) ) )
64 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( w  o.  ( w  o.  w
) )  C_  v
)
6563, 64sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( ( cls `  ( J  tX  J ) ) `  w )  C_  v
)
66 imass1 5500 . . . . . . . . . . . . . . 15  |-  ( ( ( cls `  ( J  tX  J ) ) `
 w )  C_  v  ->  ( ( ( cls `  ( J 
tX  J ) ) `
 w ) " { x } ) 
C_  ( v " { x } ) )
6765, 66syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( (
( cls `  ( J  tX  J ) ) `
 w ) " { x } ) 
C_  ( v " { x } ) )
6860, 67sstrd 3613 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( ( cls `  J ) `  ( w " {
x } ) ) 
C_  ( v " { x } ) )
6968ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( ( cls `  J ) `  (
w " { x } ) )  C_  ( v " {
x } ) )
7050, 69sstrd 3613 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( ( cls `  J ) `  b
)  C_  ( v " { x } ) )
71 simp-5r 809 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  a  =  ( v " { x } ) )
7270, 71sseqtr4d 3642 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( ( cls `  J ) `  b
)  C_  a )
7331, 72jca 554 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  /\  ( { x }  C_  b  /\  b  C_  (
w " { x } ) ) )  ->  ( x  e.  b  /\  ( ( cls `  J ) `
 b )  C_  a ) )
7473ex 450 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  /\  b  e.  J )  ->  (
( { x }  C_  b  /\  b  C_  ( w " {
x } ) )  ->  ( x  e.  b  /\  ( ( cls `  J ) `
 b )  C_  a ) ) )
7574reximdva 3017 . . . . . . 7  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  ( E. b  e.  J  ( { x }  C_  b  /\  b  C_  (
w " { x } ) )  ->  E. b  e.  J  ( x  e.  b  /\  ( ( cls `  J
) `  b )  C_  a ) ) )
7627, 75mpd 15 . . . . . 6  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)  ->  E. b  e.  J  ( x  e.  b  /\  (
( cls `  J
) `  b )  C_  a ) )
77 simp-5l 808 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  ->  U  e.  (UnifOn `  X ) )
78 simplr 792 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  ->  v  e.  U )
79 ustex3sym 22021 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  v  e.  U )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)
8077, 78, 79syl2anc 693 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  v )
)
8176, 80r19.29a 3078 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  /\  x  e.  a )  /\  v  e.  U )  /\  a  =  ( v " { x } ) )  ->  E. b  e.  J  ( x  e.  b  /\  (
( cls `  J
) `  b )  C_  a ) )
82 opnneip 20923 . . . . . . . 8  |-  ( ( J  e.  Top  /\  a  e.  J  /\  x  e.  a )  ->  a  e.  ( ( nei `  J ) `
 { x }
) )
836, 37, 41, 82syl3anc 1326 . . . . . . 7  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  a  e.  ( ( nei `  J
) `  { x } ) )
841utopsnneip 22052 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  x  e.  X )  ->  (
( nei `  J
) `  { x } )  =  ran  ( v  e.  U  |->  ( v " {
x } ) ) )
8533, 42, 84syl2anc 693 . . . . . . 7  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  (
( nei `  J
) `  { x } )  =  ran  ( v  e.  U  |->  ( v " {
x } ) ) )
8683, 85eleqtrd 2703 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  a  e.  ran  ( v  e.  U  |->  ( v " { x } ) ) )
87 eqid 2622 . . . . . . . 8  |-  ( v  e.  U  |->  ( v
" { x }
) )  =  ( v  e.  U  |->  ( v " { x } ) )
8887elrnmpt 5372 . . . . . . 7  |-  ( a  e.  J  ->  (
a  e.  ran  (
v  e.  U  |->  ( v " { x } ) )  <->  E. v  e.  U  a  =  ( v " {
x } ) ) )
8937, 88syl 17 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  (
a  e.  ran  (
v  e.  U  |->  ( v " { x } ) )  <->  E. v  e.  U  a  =  ( v " {
x } ) ) )
9086, 89mpbid 222 . . . . 5  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  E. v  e.  U  a  =  ( v " {
x } ) )
9181, 90r19.29a 3078 . . . 4  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J
)  /\  x  e.  a )  ->  E. b  e.  J  ( x  e.  b  /\  (
( cls `  J
) `  b )  C_  a ) )
9291ralrimiva 2966 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  /\  a  e.  J )  ->  A. x  e.  a  E. b  e.  J  ( x  e.  b  /\  (
( cls `  J
) `  b )  C_  a ) )
9392ralrimiva 2966 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  ->  A. a  e.  J  A. x  e.  a  E. b  e.  J  ( x  e.  b  /\  (
( cls `  J
) `  b )  C_  a ) )
94 isreg 21136 . 2  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. a  e.  J  A. x  e.  a  E. b  e.  J  ( x  e.  b  /\  (
( cls `  J
) `  b )  C_  a ) ) )
954, 93, 94sylanbrc 698 1  |-  ( ( U  e.  (UnifOn `  X )  /\  J  e.  Haus )  ->  J  e.  Reg )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {csn 4177   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Topctop 20698   clsccl 20822   neicnei 20901   Hauscha 21112   Regcreg 21113    tX ctx 21363  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-reg 21120  df-tx 21365  df-ust 22004  df-utop 22035
This theorem is referenced by:  uspreg  22078
  Copyright terms: Public domain W3C validator