| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustexsym | Structured version Visualization version Unicode version | ||
| Description: In an uniform structure,
for any entourage |
| Ref | Expression |
|---|---|
| ustexsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 798 |
. . . 4
| |
| 2 | simplr 792 |
. . . . 5
| |
| 3 | ustinvel 22013 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . 4
|
| 5 | ustincl 22011 |
. . . 4
| |
| 6 | 1, 4, 2, 5 | syl3anc 1326 |
. . 3
|
| 7 | ustrel 22015 |
. . . . . . 7
| |
| 8 | dfrel2 5583 |
. . . . . . 7
| |
| 9 | 7, 8 | sylib 208 |
. . . . . 6
|
| 10 | 9 | ineq1d 3813 |
. . . . 5
|
| 11 | cnvin 5540 |
. . . . 5
| |
| 12 | incom 3805 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3eqtr4g 2681 |
. . . 4
|
| 14 | 1, 2, 13 | syl2anc 693 |
. . 3
|
| 15 | inss2 3834 |
. . . 4
| |
| 16 | ustssco 22018 |
. . . . . 6
| |
| 17 | 1, 2, 16 | syl2anc 693 |
. . . . 5
|
| 18 | simpr 477 |
. . . . 5
| |
| 19 | 17, 18 | sstrd 3613 |
. . . 4
|
| 20 | 15, 19 | syl5ss 3614 |
. . 3
|
| 21 | cnveq 5296 |
. . . . . 6
| |
| 22 | id 22 |
. . . . . 6
| |
| 23 | 21, 22 | eqeq12d 2637 |
. . . . 5
|
| 24 | sseq1 3626 |
. . . . 5
| |
| 25 | 23, 24 | anbi12d 747 |
. . . 4
|
| 26 | 25 | rspcev 3309 |
. . 3
|
| 27 | 6, 14, 20, 26 | syl12anc 1324 |
. 2
|
| 28 | ustexhalf 22014 |
. 2
| |
| 29 | 27, 28 | r19.29a 3078 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ust 22004 |
| This theorem is referenced by: ustex2sym 22020 neipcfilu 22100 |
| Copyright terms: Public domain | W3C validator |