MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustincl Structured version   Visualization version   Unicode version

Theorem ustincl 22011
Description: A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
ustincl  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  e.  U )  ->  ( V  i^i  W )  e.  U )

Proof of Theorem ustincl
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . . . . . . . 8  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
2 isust 22007 . . . . . . . 8  |-  ( X  e.  _V  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
31, 2syl 17 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  e.  (UnifOn `  X )  <->  ( U  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
43ibi 256 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  C_ 
~P ( X  X.  X )  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) )
54simp3d 1075 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) )
6 sseq1 3626 . . . . . . . . 9  |-  ( v  =  V  ->  (
v  C_  w  <->  V  C_  w
) )
76imbi1d 331 . . . . . . . 8  |-  ( v  =  V  ->  (
( v  C_  w  ->  w  e.  U )  <-> 
( V  C_  w  ->  w  e.  U ) ) )
87ralbidv 2986 . . . . . . 7  |-  ( v  =  V  ->  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  <->  A. w  e.  ~P  ( X  X.  X
) ( V  C_  w  ->  w  e.  U
) ) )
9 ineq1 3807 . . . . . . . . 9  |-  ( v  =  V  ->  (
v  i^i  w )  =  ( V  i^i  w ) )
109eleq1d 2686 . . . . . . . 8  |-  ( v  =  V  ->  (
( v  i^i  w
)  e.  U  <->  ( V  i^i  w )  e.  U
) )
1110ralbidv 2986 . . . . . . 7  |-  ( v  =  V  ->  ( A. w  e.  U  ( v  i^i  w
)  e.  U  <->  A. w  e.  U  ( V  i^i  w )  e.  U
) )
12 sseq2 3627 . . . . . . . 8  |-  ( v  =  V  ->  (
(  _I  |`  X ) 
C_  v  <->  (  _I  |`  X )  C_  V
) )
13 cnveq 5296 . . . . . . . . 9  |-  ( v  =  V  ->  `' v  =  `' V
)
1413eleq1d 2686 . . . . . . . 8  |-  ( v  =  V  ->  ( `' v  e.  U  <->  `' V  e.  U ) )
15 sseq2 3627 . . . . . . . . 9  |-  ( v  =  V  ->  (
( w  o.  w
)  C_  v  <->  ( w  o.  w )  C_  V
) )
1615rexbidv 3052 . . . . . . . 8  |-  ( v  =  V  ->  ( E. w  e.  U  ( w  o.  w
)  C_  v  <->  E. w  e.  U  ( w  o.  w )  C_  V
) )
1712, 14, 163anbi123d 1399 . . . . . . 7  |-  ( v  =  V  ->  (
( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v )  <->  ( (  _I  |`  X )  C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w )  C_  V
) ) )
188, 11, 173anbi123d 1399 . . . . . 6  |-  ( v  =  V  ->  (
( A. w  e. 
~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U )  /\  A. w  e.  U  (
v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  <-> 
( A. w  e. 
~P  ( X  X.  X ) ( V 
C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( V  i^i  w )  e.  U  /\  ( (  _I  |`  X )  C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w )  C_  V
) ) ) )
1918rspcv 3305 . . . . 5  |-  ( V  e.  U  ->  ( A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  ->  ( A. w  e.  ~P  ( X  X.  X ) ( V 
C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( V  i^i  w )  e.  U  /\  ( (  _I  |`  X )  C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w )  C_  V
) ) ) )
205, 19mpan9 486 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  ( A. w  e.  ~P  ( X  X.  X
) ( V  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( V  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  V ) ) )
2120simp2d 1074 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  A. w  e.  U  ( V  i^i  w )  e.  U
)
22 ineq2 3808 . . . . 5  |-  ( w  =  W  ->  ( V  i^i  w )  =  ( V  i^i  W
) )
2322eleq1d 2686 . . . 4  |-  ( w  =  W  ->  (
( V  i^i  w
)  e.  U  <->  ( V  i^i  W )  e.  U
) )
2423rspcv 3305 . . 3  |-  ( W  e.  U  ->  ( A. w  e.  U  ( V  i^i  w
)  e.  U  -> 
( V  i^i  W
)  e.  U ) )
2521, 24mpan9 486 . 2  |-  ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  W  e.  U )  ->  ( V  i^i  W )  e.  U )
26253impa 1259 1  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  e.  U )  ->  ( V  i^i  W )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  ustexsym  22019  trust  22033  utoptop  22038  restutopopn  22042  ustuqtop2  22046
  Copyright terms: Public domain W3C validator